Quadrupole Ion-Trap Mass Analyzer
EAS Workshop
November 15, 2004

Jerry Pappas
Thermo Electron
Finnigan Life Sciences Mass Spectrometry
265 Davidson Avenue
Somerset, NJ 08873
E-mail: jerry.pappas@thermo.com
LCQ 3-D Ion Traps
Basic Ion Trap Components

Schematically, the layout of an ion-trap resembles a slice through a quadrupole.
Helium as a Damping (Buffer) Gas

Without Helium

With Helium

collision

He

He

He

He
Helium as a Damping Gas

Without Buffer Gas

With Buffer Gas
Purposes of Buffer Gas

- Trap injected ions by removing KE
- Damps ions to center of ion trap
- Collision gas for MS/MS

Results...

Increase sensitivity
Increase resolution
 i.e. resolution is improved by giving narrower and larger peaks

Increase fragmentation efficiency
Ion Stability in the Trap

Controlled by a culmination of differential equations termed **Reduced Mathieu Equations**:

\[a_z = - \frac{16eU}{m(r_0^2 + 2z_0^2)\Omega^2} \]

\[q_z = - \frac{8eV}{m(r_0^2 + 2z_0^2)\Omega^2} \]

- **a** = variable solution
- **q** = solution
- **e** = charge of trapped ion
- **U** = DC Voltage
- **V** = RF amplitude
- **m** = mass of ion
- **Ω** = constant summarizing mathematics
- **z_0** = distance between centre of trap to either endcap
- **R_0** = internal radius of ring electrode
Excel Trapping Field Animation
The region shaded blue indicates a (DC) and q (RF) values which provide stable trajectories in the r-direction.

The region shaded yellow indicates the z-stable a and q combinations.

The green area where the r- and z-stable regions overlap indicates the a and q combinations under which ions will be stable in the trap.
Ion Stability Diagram

\[a_z = -\frac{16 eU}{m \left(r_0^2 + 2 z_0^2 \right) \Omega^2} \]

\[q_z = -\frac{8 eV}{m \left(r_0^2 + 2 z_0^2 \right) \Omega^2} \]
“There are two landmarks in [the history of Quadrupole Ion Traps]. The first is the invention of the ion trap [in 1953] by Wolfgang Paul and Hans Steinwedel, which was recognized by the award of the 1989 Nobel Prize in Physics. The second is the discovery, announced in 1983, of the mass selective instability scan by George C. Stafford, Jr. On these two landmarks rests the entire field of ion trap mass spectrometry.”

Raymond March, John F. J. Todd in the preface of

Practical Aspects of Ion Trap Mass Spectrometry
Mass Selective Instability

\[q_z = k \frac{V}{(m/e)} \]

“Ramp RF, Ions Leave Low \(m/z \) to High \(m/z \)”
Prescan before the analytical scan

• Measures the # of ions in the trap for a pre-defined time (10 – 30 ms)

• Allows software to determine optimum ion injection time
What is AGC and Why Is it Important?

Camera AE

- Too much light degrades the image stored on film, causing a loss of color and image resolution.
- Too little light results in dark picture with no fine details visible.
- Cameras with high quality light meters and AE controls produce high quality pictures over a wide dynamic range of lighting conditions.

LCQ/LTQ Series AGC

- Controls amount of ions (light) entering the ion trap (film)
- Too many ions degrade the spectral quality in the trap, causing loss in mass resolution and mass assignment. Too few ions result in poor sensitivity to low level or minor components.
- AGC ensures excellent quality MS, SIM and MS/MS spectra, as well as excellent sensitivity over a wide dynamic range.

Thermo
ELECTRON CORPORATION

Analyze • Detect • Measure • Control™
AGC (Ion Population Control)

~ 300 Ions

~ 1500 Ions

~ 3000 Ions

~ 6000 Ions

Good Resolution

Poor Resolution
Major Strengths of Ion Trap Mass Spectrometers that make them Valuable Tools for Various Experiments

- Full-Scan MS\(^n\) Sensitivity
- Resonant Step-Wise Wise Excitation
- “Universal” Excitation Conditions
3D Ion Trap: RF voltage across the ring electrode produces a quadruple field that maintains the ions over the mass range of interest in stable trajectories within the trap. As one ion mass is being scanned out of the trap to the detector, the remaining ions remain stably trapped. Excellent full-scan MSⁿ sensitivity.
Quadrupole: A combination of RF and DC voltages across the rods produces a stable trajectory for only one ion at a time. As one ion mass is being scanned out to the detector, the remaining ion masses are lost. Decreased full-scan MS and MS² sensitivity.

Full-Scan MS\(n\) Sensitivity (continued)
Depending on the collision energy and collision pressure, one can get a combination of MS^2, MS^3...-MS^n occurring simultaneously. This can make it difficult to trace a fragment back to its parent which complicates spectral interpretations.
Unique Features of Ion Traps...

Mass separation in time – Isolation of the ions of interest and subsequent dissociation (MS/MS) are done in the same “chamber”.

Also…

Ion Trap (resonant excitation) : Excitation energy is in resonance with only one mass at a time. Fragments, once formed, can not be further excited unless they are purposely selected for next stage of MS. **Allows one to take apart a molecule in a controlled, step-wise fashion.**

But…

Triple Quad (nonresonant excitation) : Acceleration voltage applied equally to all masses. **Get a mix of ms², ms³…msⁿ products.**
“Universal” Excitation Conditions

Triple Quadrupole Mass Spectrometer

- Cmpd A
- Cmpd B

Ion Trap Mass Spectrometer

- NCE ~ 30%

Less variability between compounds in an ion trap mass spectrometer
Other Interesting Aspects of Ion Traps...

Data Dependent Scanning

1. Full Scan MS

2. Full Scan MS2

* ion selected

A (1, 2)

B (1, 2)

C (1)

Threshold

Intensity

Time
Dynamic Exclusion - MS and MS/MS of Coeluters

MS

MS/MS

Threshold

MS/MS

m/z

Time

m/z

206

255

377

231

365

377
Turning it up a notch!
The Finnigan LTQ – Linear Ion Trap
Basic Linear Trap Structure

- \(R_0 = 4 \text{ mm} \)
- Hyperbolic Rods
- \(X_0 > Y_0 \)

12 mm

12 mm

37 mm

Slot: 30 mm x .25 mm

Front Section

Center Section

Back Section

\[X \]
\[Y \]
\[Z \]
LTQ Vacuum Chamber – Linear Trap and Dynodes
2D Ion-Trap Animation
How Does the LTQ Save Time?

• Improved Cycle Time
 – More mass spectra can be acquired across narrow chromatographic peaks
 – Increased information content
 – Simultaneous acquisition of MS² spectra from co-eluting metabolites
 – Acquisition of MS² spectra from low-level metabolites in complicated matrices
 – Increased confidence in structural assignments based on spectral features
 – Multiple spectra can be compared for reproducibility

• Improved Sensitivity
 – Lower levels of metabolite detected
 – Less sample preparation required
 – Less re-running of samples required
Improved Cycle Time of the LTQ

3 seconds

<table>
<thead>
<tr>
<th>TSQ</th>
<th>MS</th>
<th>MS²</th>
<th>MS²</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCQ</td>
<td>MS²</td>
<td>MS²</td>
<td>MS²</td>
</tr>
<tr>
<td>LTQ</td>
<td>MS²</td>
<td>MS²</td>
<td>MS²</td>
</tr>
</tbody>
</table>
Test System

- Buspirone incubated with microsomes from male Sprague-Dawley rats
 - Buspirone was incubated at concentrations of 0.1 uM, 1.0 uM, and 10 uM
 - Time points at 0 min and 60 min were acquired for each concentration
 - Samples were diluted in half with acetonitrile at the appropriate time to quench the reactions
 - Samples were centrifuged to precipitate the proteins
 - 10 µL of supernatant from each sample was injected without any preconcentration

![Buspirone molecule](image)

Buspirone (MH⁺: 386)
Improved Sensitivity of the LTQ

NL: 9.13E4
buspirone_4_12_2004_35#1709 RT:
10.60 AV: 1 SB: 37 10.94-11.94 ,
9.00-10.28 F: ITMS + c ESI sid=15.00
d Full ms2 402.30@35.00 [100.00-415.00]

10 uM

NL: 7.00E3
buspirone_4_12_2004_33#1673 RT:
10.56 AV: 1 SB: 27 10.92-11.89 ,
9.62-10.23 F: ITMS + c ESI sid=15.00
d Full ms2 402.30@35.00 [100.00-415.00]

1.0 uM

NL: 6.52E2
buspirone_4_12_2004_31#1661 RT:
10.58 AV: 1 SB: 32 11.00-12.00 ,
9.59-10.28 F: ITMS + c ESI sid=15.00
d Full ms2 402.30@35.00 [100.00-415.00]

0.1 uM
Using Higher Order MSⁿ Spectra to Postulate Metabolite Structures

1st most intense ion
1st most intense fragment
1st most intense fragment

Instrument continuously cycles between these 9 scan events

This scanning sequence is designed to obtain MS⁵ data on a smaller number of components. It is useful for when an initial MS² screen has been performed that limits the number of possible metabolites that need to be monitored to those on a parent mass list.
MSn Peak Assignments for Buspirone/Hydroxy Metabolite

123/139 → 222/238 → 265/281

152/168 → 122/122
Potential Drawbacks of Ion Trap Mass Spectrometers that the LTQ was Designed to Overcome

Limited Storage Capacity

Inefficient Trapping
Storage Capacity

- There is a maximum number of ions that can be stored within an ion trap at any one time
 - When filled beyond this maximum, “space charging” will occur

- “Space charging” can degrade spectral resolution, mass accuracy, and sensitivity
Storage Capacity (continued)

Ring Electrode

3D-Trap: Ions need to be confined to a small volume at center of trap for optimum performance

2D-Trap: Ions can spread out in the axial dimension without degrading performance

The ion storage capacity of the 2D-trap is more than 20x greater than that of the 3D-trap
Trapping Efficiency in a 3D-Trap

A positively charged ion is repelled from the trap by a positive electrical field.

A 3D RF field exists which is unfavorable for ion trapping except for during a narrow phase window.

A positively charged ion is pulled through the trap by a negative electrical field.

A positively charged ion is repelled from the trap by a positive electrical field.
In the LTQ 2D trap, the RF field is perpendicular to the ion entrance axis which reduces the problems associated with ion injection in the 3D trap. This results in a 10-15x improvement in trapping efficiencies.
Summary – Analytical Improvements

• Increased Trapping Efficiency (55-75%)
• Increased Trapping Capacity (~20,000 ions)
• Increased Sensitivity (Dual detectors-2x better detection efficiency).

Which means....

Increased Dynamic Range (4-5 orders of linear Dynamic range)
Increased S/N for full Scan MS
Practical MSn experiments
Faster Scan times (16,700 amu/sec – Normal Mode)
Resolution (FWHM) 30,000 (m/z 1522) at 27 amu/sec
Method for DD Neutral loss scanning capability
Platform for Hybridization (FT/MS)

FINNIGAN LTQ FT
Questions?