
Homework 9

Setting up: more packages (yak shaving)

The two most common sources for R packages are CRAN and Github. CRAN is specific to R; Github is
a “social code” site of enormous size that has become the de facto standard host for open source software
in current development. RStudio’s “Install Packages…” menu command or the R install.packages
function are primarily for installing from CRAN. You can simply enter install.packages("XML") and
R will look on CRAN for the XML package, download it, and install it. Other packages are not in
CRAN. The devtools::install_github is a convenient way to get a package on Github. The syntax is
install_github("user/repo") where user is the name of the user and repo is the name of the package
repository. This also corresponds to the part of the URL that follows http://www.github.com/. For
example, the package for this course is http://www.github.com/agoldst/litdata. You have been installing
it with install_github("agoldst/litdata"). As this example suggests, when you load the package,
regardless of where you installed it from, you use only the name of the package, as in library("litdata").
This is as good a moment as any to remark about the xyz::abc syntax. It means “abc from the package
xyz”, and you can use it to access a function (or other variable) in the xyz package even without loading
that package using library.
Install the following additional packages from CRAN. Please let me hear from you soon if you encounter
problems with the installation process:

• XML
• httr
• jsonlite
• rvest

Incidentally, CRAN also has a set of pages which suggest good packages for various kinds of work you might
want to do in R: these are called the Task Views. There is one for Web Technologies.

Extra notes on working with XML in R (no exercises)

Memory leaks, segmentation faults, and other happy accidents

XML is one of the many packages which allow R programs to interface with software written in other pro-
gramming languages. In this case the software is libxml2, a C-language library for processing XML. C is
less user-friendly than R and abstracts away fewer operations of the machine, but it can be much faster.
In particular, in C, the programmer must manually keep track of where all variables are stored and when
they can be “cleaned up” so that the RAM used to store them can be used for something else. In R, you
normally never worry about this, because the language takes care of it for you through an automatic process
charmingly known as garbage collection.
Because your XML objects (which are returned from functions like xmlParse) are actually living over in a C
program, it’s possible to write an R program that either fails to clean them up when it is done with them
(in which case they sit in memory, taking up space: this is a memory leak) or that tries to access data which
has already been deleted. In the latter case, a segmentation fault occurs and your program will crash, taking
R with it. (RStudio itself will normally not crash: it will show you a cute “exploding bomb” dialog box and
then restart, but you will have lost anything you didn’t save.)
Don’t worry about memory leaks at this stage; if you spend a lot of time trying out XML functions in your
console and things get really slow, you might be able to fix the situation by quitting RStudio. And if you

1

http://cran.r-project.org/
http://www.github.com/agoldst/litdata
http://cran.r-project.org/web/views/
http://cran.r-project.org/web/views/WebTechnologies.html
http://xmlsoft.org/

are using R interactively, it’s hard to occasion a segfault unless you use the XML function free, which deletes
the C data structures associated with an R XML variable. But if you are knitting, it is all too easy, because
knitr tries to cache the results of your computations, but does not keep track of R values that are secretly
pointers to C values. If you knit, change your R markdown, then knit again, your program may try to access
cached pointers to values that no longer exist. Long story short: if you use XML in your R markdown you
can encounter mysterious segfault crashes when you knit. The way to avoid this is to disable cacheing for
chunks that refer to XML objects (this includes document objects from xmlParse, nodes from xmlRoot, and
node sets from getNodeSet). To do this, simply add cache=F to the chunk options. Or, to turn off cacheing
globally for your whole program, add cache=F to the options passed to knitr::opts_chunk$set in your
first chunk. I recommend this as the simpler option, but do this only for programs that use XML or other
packages that interface with outside software, so that you can still benefit from the big speed-up cacheing
provides when you are writing your programs. (There are fancier approaches to this issue, but you spend
more time figuring them out than you lose by just disabling cacheing.)

Nodeset indexing

I wasn’t clear enough in class about ways to subscript collections of XML nodes. In particular, you can use
logical subscripting with nodesets. As with lists, there are two subscript operators: sub-list subscripting with
single brackets [...] and single-element subscripting with double brackets [[...]]. You can use vector
subscripts only with [...], and the results are again a collection (even of a single element). With [[...]]
you can only use a single numerical index or a name in quotes (if the nodes are named, as in the results from
xmlChildren), and the result is a single node value. Resuming the example from class:

crisis <- xmlParse("tei-sample/mjp/Crisis130_22.2.tei.xml")
document object can be treated as though it were
itself the root node
all_divs <- getNodeSet(crisis, "//def:div",

namespaces=c(def="http://www.tei-c.org/ns/1.0"))
div_types <- xmlSApply(all_divs, xmlGetAttr, "type")

We can use single-bracket logical-vector subscripting to pick out the <div type="poetry"> element:

all_divs[div_types == "poetry"]

[[1]]
<div type="poetry">
<ab>THE NEGRO SPEAKS OF RIVERS </ab>
<ab>LANGSTON HUGHES </ab>
<ab>I'VE known rivers: I've known rivers ancient as the world and older than the flow of human blood in human veins. </ab>
<ab>My soul has grown deep like the rivers. </ab>
<ab>I bathed in the Euphrates when dawns were young. </ab>
<ab>I built my hut near the Congo and it lulled me to sleep. </ab>
<ab>I looked upon the Nile and raised the pyramids above it. </ab>
<ab>I heard the singing of the Mississippi when Abe Lincoln went down to New Orleans, and I've seen its muddy bosom turn all golden in the sunset. </ab>
<ab>I've known rivers; Ancient, dusky rivers. </ab>
<ab>My soul has grown deep like the rivers. </ab>

</div>

The result is a single-element list (an ordinary R list) holding the <div> node containing Hughes’s poem.
(The last two code blocks, incidentally, are cache=F chunks in my R markdown.)

2

XML functions: A quick reference

xmlParse(filename) Reads in an XML document stored in filename.
xmlTreeParse(filename) Same as xmlParse, but, by default, return a nested R list representing the XML

hierarchy instead of using the C data structures. Slower but sometimes convenient.
xmlRoot(doc) Extracts the root node of the results of an xmlParse. Often superfluous (since in general a

document is treated as synonymous with its root node by many of the other XML functions).
xmlChildren(node) Gets an ordinary R list of node’s child nodes.
xmlParent(node) Gets the unique parent node of node.
xmlValue(node, recursive=T) If node is a leaf (with no children), returns the text in node. Otherwise,

if recursive is TRUE (as it is by default), tries to stick together all the text in all the leaves that are
descendants of node.

xmlAttrs(node) Gets a vector containing all the attributes of node (the names of the vector elements are
the attribute names).

xmlGetAttr(node, attr, default) Gets the value of the attr attribute of node. If there is no such
attribute, returns default instead. It’s sometimes convenient for this to be something other than
NULL.

names(node) Returns a vector of the names of the children of node.
node[[j]] Returns the jth child of node.
node[index_vector] Returns the subset of node’s children as given by index_vector.
getNodeSet(doc, xpath, ns) Searches the document containing node for all nodes matching the XPath

given in the string xpath. If xpath is relative then the search is relative to node. ns is a named
character vector giving namespace shorthands used in xpath. The result is a list-like object called a
“node set.”

xmlApply(nodeset, f, ...) Returns the list resulting from calling f on each node in nodeset with addi-
tional parameters in

xmlSApply(nodeset, f, ...) Like xmlApply, but if each result is a single value, then the result is an
ordinary vector.

xpathApply(doc, xpath, f, ..., ns) More efficient shortcut for xmlApply(getNodeSet(doc, xpath,
ns), f, ...)).

xpathSApply Simplifying version of xpathApply.

As an example of xpathApply and some of the other operations above, I’ll give a somewhat speedier revision
to an example from class. Let’s define a function to operate on a <sp> (speech) node, process_node, by
extracting the name of the speaker and the met attributes of all the children <l> elements, and combining
these into a little two-column data frame.

process_node <- function (sp) {
speaker <- xmlGetAttr(sp, "who",

default="<missing>")
meter <- sapply(sp[names(sp) == "l"],

xmlGetAttr, "met",
default="<missing>")

data.frame(speaker=speaker, meter=meter,
stringsAsFactors=F)

}

Now we can load the file:

fe <- xmlParse("fair-em/A21328-sheriko.xml")

In an XPath, x[y] means “an x node with at least one y child.” So our procedure will be to select all the
<sp> nodes with at least one <l> child and then apply process_node to them:

3

annoying namespace gotcha
ns <- c(def="http://www.tei-c.org/ns/1.0")
meters_list <- xpathApply(fe, "//def:sp[def:l]", process_node,

namespaces=ns)

meters_list is a list of our data frames, one frame for each speech in the play. To combine them into a big
data frame, we use:

spkrs_meter <- do.call(rbind, meters_list)

And then we can proceed to further analysis as in class.

Jockers: a little more XML practice (exercises)

Read Jockers, chap. 10. At last you can make use of some of the other supplied data in the
TextAnalysisWithR.zip archive. Jockers continues with a TEI-encoded Moby-Dick, which you can find
in TextAnalysisWithR/data/XML1/melville1.xml. In the TextAnalysisWithR/data/XMLAuthorCorpus
folder, he has supplied a number of other interesting texts, including several Irish-American novels, e.g. Black
Soil by Josephine Donovan (1930). But just for the purposes of the simple exercise in programming, let’s
work with melville1.xml. Copy it into your folder for this homework and read it in using

mb <- xmlParse("melville1.xml")

The chapter reviews some of the XML functions you’ve already seen. Jockers uses xmlTreeParse with
useInternalNodes=T; as the XML help tells you, you can just as well use xmlParse with no extra parameters
with the same result. Jockers uses the xmlElementsByTagName function, which you can read about in the
online help, but you don’t need it. Use [...] and names to save typing. Finally, in section 10.6, Jockers
uses xpathApply rather idiosyncratically: it turns out that if you omit the function to apply to the node set,
xpathApply works like getNodeSet. You can verify this by replacing all the 10.6 uses of xpathApply with
getNodeSet.

Skip the 10.1 practice problem.

It won’t surprise you that we can produce a rather more efficient and modular version of the big for loop
on p. 94, in which, in fact, we don’t explicitly use for at all. Write a function, process_chap, that takes
a div1 node, extracts all the text in each of its p children, and produces a data frame with two columns,
chapter and feature. The chapter should come from the n attribute of the div1; the feature should be
(yet again) a vector of all the words of the chapter. Here’s your friend featurize, which you should use
within process_chap:

featurize <- function (ll) {
result <- unlist(strsplit(ll, "\\W+"))
result <- result[result != ""]
tolower(result)

}

Hint: use process_node above as a model. You can follow it quite closely, but you need to change one of
the functions used; think about what parts of the XML you need to extract from which div1. Test if your
process_chap function works by applying it to this miniature example:

4

https://content.sakai.rutgers.edu/access/content/group/71a813d6-2322-4e4a-94b2-47ab9c063e15/0402-slides.pdf

mini <- xmlParse(
'
<div1 n="1"><p>Things happen.</p><p>Often <emph>more</emph> than once.</p></div1>
')
process_chap(xmlRoot(mini))

chapter feature
1 1 things
2 1 happen
3 1 often
4 1 more
5 1 than
6 1 once

Now use xpathApply to get all div1 nodes of type chapter, and process them with process_chap, yielding
a list of data frames of features in each chapter, chap_frames. Hints: beware the namespace gotcha. Also,
the XPath you need to get those div1 nodes can be found in Jockers’s code, but he uses it in a call to
getNodeSet instead of xpathApply (which is why he then writes a big for loop).

Now create one big data frame (one row for each word in the body chapters of the novel!) with:

mb_features <- do.call(rbind, chap_frames)

As it happens the chapter column is still character data. Let’s assert that it is in fact numeric:

mb_features$chapter <- as.numeric(mb_features$chapter)

Now let’s make a graph on the model of Jockers’s Figure 10.1. But enough of ahab and whale. Let’s count
the pronouns i and he instead. Use dplyr to create a table with per-chapter totals of each feature; then add
a per-chapter frequency for each feature (number of occurrences divided by total of all words in the chapter);
then filter to keep only your key words i and he; you should end up with two rows for each chapter and
columns chapter, feature, and freq. Then create a faceted bar plot (instead of the side-by-side barplot
Jockers uses). Hints: this is another bar graph where you need to set stat="identity"; also, you can ignore
warnings about position_stack.

Here’s mine (I put the plots on top of one another instead of side-by-side and made the bars thinner with a
constant width value):

5

he

i

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.01

0.02

0.03

0.04

0.05

0 50 100
chapter

fr
eq

Very optional: use tidyr::spread to produce a data frame suitable to try out the cor.test call at the end
of 10.5. cor.test(x, y), by the way, gives statistical information about the fit of the linear regression of y
on x.

HTML

Another markup language (no exercise)

You already know a lot about HTML, even if you have never learned anything about HTML. First of all,
you interact with HTML all the time, since it is the language in which web pages are encoded. Second of
all, HTML is more or less a specialized subset of XML, so you already know the basic HTML principles: an
ordered hierarchy, specified by tags within <...> with possible attributes. The root of an HTML document
is an <html> element; its children are a <head> and a <body>. Use your browser’s “View Source” menu
command to look over any webpage you like (often you have to scroll past a lot of gobbledygook in the
<head> to find the <body> holding the text you read on the page) and get a sense of this structure.

And third! Markdown is in fact designed to be convertible to HTML, and so you already know quite a lot
about the kinds of markup HTML uses—just via its Markdown equivalents instead of the canonical HTML
tags. Markdown does italics with *...*; in HTML, the equivalent is Markdown section
headings are # ... in HTML, the equivalent is <h1>...</h1>. Paragraphs are separated by blank lines in
markdown; in HTML, more verbosely, you use <p>...</p> tags.

As for the “hyper” part of “hypertext,” most of the work is done by one more tag, <a>. An <a> tag has an
href attribute that says where the link points; the content of the tag is the text of the link:

Course web site

6

which comes out as a clickable link

Course web site

on a webpage.

Handling HTML (exercise)

The XML package is the R workhorse for probing HTML, too. The only formal differences are that you use
htmlParse instead of xmlParse, and you can forget all about namespaces. However, HTML structures are
typically much less intricate than XML structures, and also much more ad hoc and messy. That is because
documents on the web are encoded with a primary emphasis on presentation and usability for the human
browser, not on the meaningfulness of their encoding structure.

As an exercise in applying what you know about XML to HTML, download the home page for our Graduate
Program, (use your browser’s “Save As…” and make sure you’re only saving the HTML) to the same directory
as your homework. Then write code to load it in and construct an expression to store in a variable grad_ps
all the p descendants (not immediate children) of the div with id attribute ja-content-main. If you have
done this right, then

grad_ps[[1]]

will yield our program’s introductory “boast.”

HTML: simpler, so more complex (no exercise)

HTML has a very limited vocabulary of tags. In order to find specific content in HTML, you typically
narrow down by examining the source code and paying close attention to two attributes: class and id.
These attributes are what HTML designers use to structure web pages. The graphical layout of web pages
is produced by a series of transformations based, mostly, on the class and id values of elements, together
with their positions in the hierarchy of the document. Cascading Style Sheets (CSS), which is used to lay
out the Web, does all of its design work in these terms; for example: “Make all h2 children of div elements
of class blog_post bold, 18 point, sans serif font.” Because web pages are structured to be styled with CSS,
they can usually also be examined with XPaths. Indeed, the language of CSS selectors is very closely related
to XPath. (For a reasonable introduction, see HTML Dog’s tutorial. Very optional reading.)

In brief, the XPath x//y is written in CSS as x y; x[@id="abc"] is written x#abc; and x[@class="abc"] is
written x.abc. The great advantage of knowing a little about CSS when you want to mine webpages is that
you can make use of a tool like selectorgadget or your browser’s own “DOM Inspector” function to quickly
figure out what kind of path is need to pick out certain elements in the HTML.

If you want to use CSS rather than XPath, however, you cannot directly use XML’s getNodeSet function
(or xpathApply, or similar). Instead, you’d have to turn to the in-development package rvest. Read the
vignette that comes with this package:

vignette(package="rvest", "selectorgadget")

Installing selectorgadget in your web browser is completely optional. In any case, try out the commands in
the R code at the end of that vignette for yourself. (Underneath the hood of the rvest package, the XML
package is still doing most of the hard work.) There is no need to include this in your submitted homework.

7

http://rci.rutgers.edu/~ag978/litdata
http://english.rutgers.edu/graduate-92/
http://english.rutgers.edu/graduate-92/
http://www.htmldog.com/guides/css/
http://selectorgadget.com/

Downloading the Web (no exercise)

If you are after a whole bunch of files on the web, using “Save As…” by hand quickly grows tiresome. You
can do this using programming, if you can figure out the URLs of the files you want to download. The httr
package for R gives you functions for requesting a URL and extracting the results:

library("httr")

uri <- "http://nytimes.com"
nyt_homepage <- GET(uri)
homepage_text <- content(nyt_homepage, as="text",

encoding="UTF-8")
and save the whole page to a file
writeLines(homepage_text, "nyt-frontpage.html")

If I wanted to parse the results later:

homepage_html <- htmlParse("nyt-frontpage.html",
encoding="UTF-8")

headlines <- xpathSApply(homepage_html,
"//h3[@class='story-heading']",
xmlValue)

headlines[1]

[1] "\n Yemen’s War Leaves Aden Crumbling and StarvingNYT Now "

or equivalently, using rvest:

library("rvest")

headlines <- homepage_html %>%
html_nodes("h3.story-heading") %>%
html_text()

headlines[1]

[1] "\n Yemen’s War Leaves Aden Crumbling and StarvingNYT Now "

(If you try these lines out yourself, you might, of course, see different headlines.)

With patience and for loops, one can write R scripts to download many web pages. It’s important to know
that if you are downloading in a program, you must enforce a delay between each download, or you will be
in effect “attacking” the server hosting the web page you are asking for. The way to delay in R is to use the
Sys.sleep function. Sys.sleep(x) causes R to wait for x seconds (x can be less than 1). Different servers
have different tolerances for multiple requests from the same source.

However, it has to be said that if you are doing serious Web downloading, an R program is not the best
choice. Instead, you could make use of the wget command-line program, which can do lots of neat things
for you, like downloading an entire website. This is a program you must install separately and use from
the Terminal (Mac) or the Command Prompt (Windows). It is fairly easy to learn to use for practiced
programmers like yourselves; an excellent introduction can be found on The Programming Historian.

8

http://programminghistorian.org/lessons/automated-downloading-with-wget

	Setting up: more packages (yak shaving)
	Extra notes on working with XML in R (no exercises)
	Memory leaks, segmentation faults, and other happy accidents
	Nodeset indexing
	XML functions: A quick reference

	Jockers: a little more XML practice (exercises)
	HTML
	Another markup language (no exercise)
	Handling HTML (exercise)
	HTML: simpler, so more complex (no exercise)
	Downloading the Web (no exercise)

