Resampling Methods
The Bootstrap

Javier Cabrera
Director, Biostatistics Institute
Rutgers University
X_1, \ldots, X_N be a random sample from a distribution F and let \hat{F}_N be the empirical distribution of the data.

The usual statistical problem is to compute the distribution of some statistic $T(X_1, \ldots, X_N)$

T could be the sample mean, the sample Variance, correlation coefficient, regression slope, ..., almost anything.

The distribution of T might be of interest for obtaining C.I. of some unknown parameter θ or for testing some research hypothesis.

The main sticking point is that F is usually unknown. The classical solution is CLT, Maximum Likelihood, asymptotic approximations that may only work well for large samples.

The bootstrap method

X_1, \ldots, X_N be a random sample from a distribution F and let \hat{F}_N be the empirical distribution of the data.
Bootstrap: Described by Bradley Efron (1979)

Idea:

- Replace F by \hat{F}_N
- Compute the distribution of $T(X_1, \ldots, X_N)$ under \hat{F}_N and call it $B_{T,N}$
- $B_{T,N}$ is also called the bootstrap distribution of T.

Note: Sampling from \hat{F}_N is the same as sampling from X_1, \ldots, X_N with replacement.
Suppose that T is an estimator of a parameter θ. $\hat{\theta} = T(X_1, \ldots, X_N)$

Percentile method:
- Compute the distribution of $T(X_1, \ldots, X_N)$ under \hat{F}_N
- Calculate the percentiles of the distribution, $(q_{0.025}, q_{0.975})$

Bootstrap method:
\[
(2\hat{\theta} - q_{0.975}, 2\hat{\theta} - q_{0.025})
\]

is called the bootstrap method
OPTIONS PS=55 LS=80;
data a;
array x {30} x1-x30;
array pp {30} pp1 -pp30;
array b {30} b1 -b30;
seed=0;
do i= 1 to 30;
 x{i} = normal(seed);
 pp{i} = 1/30;
end;
keep z ;
z = mean(of x1-x30);
do i=1 to 100;
do j=1 to 30;
 k=round(rantbl(of seed pp1-pp30));
 b{j} = x{k};
end;
z = mean(of b1-b30);
output;
end;
proc univariate normal plot;
var z;
output p1=p1 p5=p5 p10=p10 p90=p90 p99=p99;
proc print;
var p1 p5 p10 p90 p99;
run;
Bootstrap R package:

Other ways:
> x = rchisq(20,1)
> mean(x)
[1] 1.704550
> y = matrix(sample(x, 1000*20,rep=T),1000,20)
> ym = apply(y,1,mean)
> quantile(ym,c(0.025,0.975))
 2.5% 97.5%
1.100729 2.415550
> 2* mean(x) - quantile(ym,c(0.975,0.025))
 97.5% 2.5%
0.9935509 2.3083719
R CODE FROM CLASS

```r
x = rchisq(20,1)
plot(sort(x),(1:20)/20,type="l")
lines(seq(length=100,0,2.5),pchisq(seq(length=100,0,2.5),1))
lines(seq(length=100,0,2.5),pnorm(seq(length=100,0,2.5),mean(x),sd(x)))
### 1000 bootstrap simulations
y = matrix(sample(x, 1000*20,rep=T),1000,20)
ym = apply(y,1,mean)
hist(ym,100)
quantile(ym,c(0.025,0.975))
2* mean(x) - quantile(ym,c(0.975,0.025))
mean(x) +c(-1,1)*1.96*sd(x)
### Coefficient of Variation
cv = function(x) var(x)/mean(x)
ym = apply(y,1,cv)
quantile(ym,c(0.025,0.975))
### Standard deviation
ym = apply(y,1,sd)
quantile(ym,c(0.025,0.975))
### Bootstrap regression
stack.ls = lsfit(stack.x,stack.loss)
b = stack.ls$coef
r = stack.ls$resid
yhat = stack.loss - r
y = matrix(sample(r, 1000*21,rep=T),1000,21)
y = t(y) + yhat
bb = apply(y,2,function(z,x=stack.x) lsfit(x,z)$coef)
dim(bb)
pairs(t(bb))
```