PRIMER NOTE

Isolation of polymorphic microsatellite markers from the malaria vector *Anopheles marajoara* (Diptera: Culicidae)

CONG LI,* RICHARD C. WILKERSON*§ and DINA M. FONSECA†

*Department of Entomology, Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, †Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103

Abstract

Microsatellite-containing regions were isolated and characterized in *Anopheles* (*Nyssorhynchus*) *marajoara*, a primary vector of malaria parasites in northeastern Amazonia, Brazil. An enrichment protocol yielded 500 positive clones. We designed primers to amplify 40 unique microsatellites, 11 of which amplified cleanly and were polymorphic. A survey of 323 individuals showed that these loci are highly variable with the number of alleles ranging from 11 to 52, and expected heterozygosity ranging from 0.64 to 0.95. These markers will be useful for studies of population structure and intraspecific variation in *A. marajoara*.

Keywords: *Nyssorhynchus*, neotropical, sex linked

Received 12 August 2004; revision accepted 29 September 2004

*Anopheles* (*Nyssorhynchus*) *marajoara* Galvão & Damasceno, ranges from southern São Paulo State, Brazil to Costa Rica, and was recently recognized as the primary vector of malaria parasites in northeastern Amazonia, Brazil (Conn *et al.* 2002). *An. marajoara* is a member of the albitarsis complex which includes four largely isomorphic species that can only reliably be separated using RAPD (random amplified polymorphic DNA) markers (Wilkerson *et al.* 1995a, 1995b) or by PCR (polymerase chain reaction) of diagnostic rDNA ITS2 sequence (Li *et al.* unpublished). Because of the significant vector status of *An. marajoara*, its wide geographical range, and questions regarding its taxonomic status, we developed microsatellite markers to study population and species level questions. This is only the second Neotropical malaria vector for which microsatellite markers have been developed, the other being *Anopheles* (*Nyssorhynchus*) *darlingi* Root (Conn *et al.* 2001).

Microsatellite loci were isolated using an enrichment protocol following Hamilton *et al.* (1999) with modifications as in Keyghobadi *et al.* (2004). Genomic DNA was extracted from three specimens of *An. marajoara* by phenol-chloroform extraction as in Wilkerson *et al.* (1993) yielding approximately two µg of DNA which was digested with *Hae*III, *Mse*I, and *Nhe*I restriction enzymes (New England Biolabs — NEB). The resulting 200–1000 bp fragments were blunt-ended, dephosphorylated, and ligated to linkers as in Keyghobadi *et al.* (2004). This DNA was then ‘enriched’ for GT, GA, CAC, GTC, GGT, and GCT repeats using streptavidin-coated magnetic beads (Dynabeads), and cloned (Hamilton *et al.* 1999). Colonies were lifted with uncharged nylon membranes. DNA was fixed to the membranes, which were then hybridized to biotin-labelled (GT)$_{15}$ (GA)$_{15}$ (CAC)$_{10}$ (GTC)$_{10}$ (GGT)$_{10}$ and (GCT)$_{10}$ oligonucleotides at 65 °C, and positive colonies were detected using the Phototope-Star Chemiluminescent Detection Kit (NEB). Approximately 2000 colonies were screened, of which about one fourth were positive, and 150 positive colonies were picked, boiled in 100 µL TE for 10 min, and vortexed. After centrifugation for 5 min at 15 000 rpm, 1 µL of supernatant was PCR amplified with T3 (5′-AATTAACCCCTCAGTAAAGGG-3′) and T7 (5′-GTAATACGACTCATATAGGGC-3′) vector primers and directly sequenced using Big Dye 3.0 (Applied Biosystems — AB). Fragment analysis was conducted on a capillary automatic sequencer ABI3100 (AB). A blue colony (no insert) was used as a negative control in each PCR reaction.

For each microsatellite sequence with sufficient flanking sequence, flanking primers were designed with primer 3
Products from three to six microsatellite loci were mixed
for 30 s, followed by 10 min at 72°C to close the PCR
reactions. Taq polymerase (AB) and 0.5 mM dNTP, 5 pmol each primer, 0.5 U Taq polymerase (AB) and 0.5 μL DNA template (~5 ng). PCR products from 12 individuals (selected from different localities) on 6.0% acrylamide gels (Protean 2 system, BIO-RAD) and visualized with ethidium bromide.

From the 40 loci for which primers were designed, we selected 11 polymorphic and easily scored loci for studying population differentiation (Table 1). One of the primers on each pair was labelled with FAM, HEX, or NED (AB). Touch-down PCR was conducted in a 20 μL reaction containing 1 x buffer (10 mM Tris-HCl, pH 8.3, 50 mM KCl, 2.5 mM MgCl₂, 200 μM dNTP, 5 pmol each primer, 0.5 U Taq polymerase (AB) and 0.5 μL DNA template (~5 ng). PCR products were run on an ABI3100 (AB). Data were automatically collected and analysed by genotyper software 2.5 (AB).

Linkage disequilibrium for all pairs of loci were tested
with GENEPOP 3.3 (Raymond & Rousset 1995). After Bonferroni correction, one pair of loci was found to be significantly linked: M6-5 with M8-2-2. We compared observed and expected frequencies under Hardy–Weinberg equilibrium using ARLEQUIN (Schneider et al. 2000) with 100 000 steps in the Markov chain and 1000 dememorization steps. After Bonferroni correction, all loci conformed to Hardy–Weinberg frequencies except for M2. Upon further testing we concluded this locus is sex linked (occurs on the X-chromosome) as deviations from expected frequencies only occur in samples where both males and females were examined (as opposed to only females).

Acknowledgements

This research was performed under a MOU between the Walter Reed Army Institute of Research and the Smithsonian Institution (SI). We thank Lee Weigt at the SI-LAB for use of laboratory and sequencing facilities. This work was principally supported by NIHAI-RO154139 to Jan Conn and also in part by CDC/NIH#U50/CCU220532 to Laura Kramer. The material reflects the views of the

© 2005 Blackwell Publishing Ltd, Molecular Ecology Notes, 5, 65–67
authors and should not be construed to represent those of the Department of the Army or the Department of Defence.

References


