26:010:680
Current Topics in Accounting Research

Dr. Peter R. Gillett
Associate Professor
Department of Accounting and Information Systems
Rutgers Business School–Newark and New Brunswick
OVERVIEW

- Rule-Based Expert Systems
- Belief Functions
- Assignments for Week 6
- Homework 4
Assignments for Week 6

Assignments for Week 7

Representing Uncertainty

- Conditional probability
 \[P(d \mid s) = \frac{P(d \& s)}{P(s)} \]

- Bayes’ Rule
 \[P(d \mid s) = \frac{P(s \mid d) \cdot P(d)}{P(s)} \]
Representing Uncertainty

- Criticisms of relevance and applicability of *objective* probabilities (based on long-run frequencies)

- Consideration of *subjective* probabilities
 * Bayesian updating important here
 * Subjective probabilities must exhibit
 • Coherence: avoid certain loss
 • Total Evidence: use all the evidence
 • Conditionalization: update using Bayes’ Rule
 * In practice bounded rationality makes this difficult
Representing Uncertainty

- The more general form of Bayes’ rule

\[
P(d | s_1 & \ldots & s_k) = \frac{P(s_1 & \ldots & s_k | d) \cdot P(d)}{P(s_1 & \ldots & s_k)}
\]

requires computation of \((mn)^k + m + n^k\) probabilities (for \(m\) diseases and \(n\) symptoms)

- Tractability requires independence assumptions
Probability theory thus leaves us with a trade-off

* assume data are independent
 • fewer numbers
 • simpler calculations
 • sacrifice accuracy

* track dependencies
 • pay computational price
Representing Uncertainty

- Kahneman & Tversky etc.
 * Humans are poor Bayesian reasoners
 * Discount prior odds
 * Recency effects
 * Over-confident in judgments
 * Poor understanding of sampling theory

- N.B. Constructive probabilities
Certainty Factors

- Designed originally for use in MYCIN
- CF: \{propositions\} $\rightarrow [-1, +1]$
 - $CF(X) = 1$ X is certainly true
 - $CF(X) = -1$ X is certainly false
 - $CF(X) = 0$ X is entirely unknown

- Generally:
 $CF(\text{action}) = CF(\text{rule}) \times CF(\text{Premise})$
Certainty Factors

- As applied in MYCIN
 - IF patient has symptoms $s_1 \& \ldots \& s_k$ and background conditions $t_1 \& \ldots \& t_m$
 - THEN conclude patient has disease d_i with certainty τ

- Background knowledge constrains application of the rules
- Buchanan & Shortcliffe argue that rigorous application of Bayes’ rule would not be more accurate because conditional probabilities are subjective
- They intend CFs and their associated manipulations as approximations of probabilistic reasoning
Certainty Factors

- Computation of certainty factors is modular (Pearl)
 * i.e., we don’t need to consider information not contained in the rule
 * conditional probabilities are not modular in this sense
 * thus, when A is true, we cannot conclude \(P(B) = \tau \) from \(P(B|A) = \tau \) unless A is all that we know
 * otherwise, if we acquire additional knowledge \(E \), we may need to consider \(P(B|A,E) \)
Certainty Factors

- In order to combine support provided by two different rules, Shortcliffe & Buchanan looked for a method that was
 * commutative
 - independent of order of firing
 * asymptotic
 - certainty arises only from an absolute proof

- Note also the argument in S & B (1975) that imperfect evidence in favor of a hypothesis is not to be construed as evidence against it
Certainty Factors

- This is expressed rather more formally:
 \[C[h,e] \neq 1 - C[\neg h,e] \]
 confirmation is not 1 - disconfirmation

- This is an idea we will re-visit e.g. when we consider Dempster-Shafer Belief Functions and their potential application in auditing
Certainty Factors

- Measure of Belief
 * the measure of increased belief in the hypothesis h, based on the evidence e, is x
 $$MB[h,e] = x$$

- Measure of Disbelief
 * the measure of increased disbelief in the hypothesis h, based on the evidence e, is y
 $$MD[h,e] = y$$
Certainty Factors

- **Formal definitions in terms of probability**

\[
MB[h,e] = \begin{cases}
1 & \text{if } P(h) = 1 \\
\frac{\max\left[P(h), P(h|e)\right] - P(h)}{\max[1,0] - P(h)} & \text{otherwise}
\end{cases}
\]

\[
MD[h,e] = \begin{cases}
1 & \text{if } P(h) = 0 \\
\frac{\min\left[P(h), P(h|e)\right] - P(h)}{\min[1,0] - P(h)} & \text{otherwise}
\end{cases}
\]

\[
\]
Certainty Factors

Characteristics
\[0 \leq \text{MB}[h,e] \leq 1, \quad 0 \leq \text{MD}[h,e] \leq 1, \quad -1 \leq \text{CF}[h,e] \leq 1 \]

If \(P[h|e] = 1 \)
\[\text{MB}[h,e] = 1, \quad \text{MD}[h,e] = 0, \quad \text{CF}[h,e] = 1 \]

If \(P[\neg h|e] = 1 \)
\[\text{MB}[h,e] = 0, \quad \text{MD}[h,e] = 1, \quad \text{CF}[h,e] = -1 \]

\(\text{MB}[h,e] = 0 \) if \(h \) is not confirmed by \(e \)
\(\text{MD}[h,e] = 0 \) if \(h \) is not disconfirmed by \(e \)
\(\text{CF}[h,e] = 0 \) if \(h \) is neither confirmed nor disconfirmed by \(e \)
Certainty Factors

- CF as defined here has the desired property
 * confirmation is not 1 - disconfirmation

- In fact
 * confirmation + disconfirmation = 0

- CF judgments must be elicited carefully from experts to ensure that they respect the constraints implied by these formal definitions
Certainty Factors

- Defining criteria
 - **Limits**
 \[\text{MB}[h,e+] \rightarrow 1, \quad \text{MD}[h,e-] \rightarrow 1, \]
 \[\text{CF}[h,e-] \leq \text{CF}[h,e- & e+] \leq \text{CF}[h,e+] \]
 - **Absolutes**
 \[\text{MB}[h,e+] = 1 \Rightarrow \text{MD}[h,e-] = 0 \]
 \[\text{MD}[h,e-] = 1 \Rightarrow \text{MB}[h,e+] = 0 \]
 \[\text{MB}[h,e-] = \text{MD}[h,e-] \text{ is undefined} \]
Certainty Factors

- Defining criteria
 * Commutativity
 \[MB[h, s_1 \& s_2] = MB[h, s_2 \& s_1] \]
 \[MD[h, s_1 \& s_2] = MD[h, s_2 \& s_1] \]
 \[CF[h, s_1 \& s_2] = CF[h, s_2 \& s_1] \]
 * Missing information
 \[MB[h, s_1 \& s?] = MB[h, s_1] \]
 \[MD[h, s_1 \& s?] = MD[h, s_1] \]
 \[CF[h, s_1 \& s?] = CF[h, s_1] \]
Certainty Factors

- Combining functions
 * Incrementally acquired evidence

\[
MB[h, s_1 \& s_2] = \begin{cases}
0 & \text{if } MD[h, s_1 \& s_2] = 1 \\
MB[h, s_1] + MB[h, s_2] \cdot (1 - MB[h, s_1]) & \text{otherwise}
\end{cases}
\]

\[
MD[h, s_1 \& s_2] = \begin{cases}
0 & \text{if } MB[h, s_1 \& s_2] = 1 \\
MD[h, s_1] + MD[h, s_2] \cdot (1 - MD[h, s_1]) & \text{otherwise}
\end{cases}
\]
Certainty Factors

- Combining functions
 * Conjunctions of hypotheses
 \[MB[h_1 \& h_2, e] = \min(MB[h_1, e], MB[h_2, e]) \]
 \[MD[h_1 \& h_2, e] = \max(MD[h_1, e], MD[h_2, e]) \]
 * Disjunctions of hypotheses
 \[MB[h_1 \lor h_2, e] = \max(MB[h_1, e], MB[h_2, e]) \]
 \[MD[h_1 \lor h_2, e] = \min(MD[h_1, e], MD[h_2, e]) \]
Certainty Factors

Strength of evidence

* Suppose evidence s_1 is not known with certainty, but a CF based on prior evidence e is known. If MB' and MD' are the degrees of belief and disbelief when s_1 is known with certainty, then the actual degrees of belief and disbelief are given by

$$MB[h, s_1] = MB'[h, s_1] \cdot \max(0, CF[h, s_1])$$

$$MD[h, s_1] = MD'[h, s_1] \cdot \max(0, CF[h, s_1])$$
Certainty Factors

- Note that in S & B (1975) MYCIN computes and maintains MBs and MDs separately, only computing CFs at the end, although CFs are then used to generate recommendations.

- This differs from “simplified” explanation in textbooks; e.g., in Durkin Chapter 12.
Certainty Factors

- In accordance with the limiting properties, multiple items of confirming evidence will result in MB --> 1 (say, 0.99)
- Suppose, however, we have a single item of disconfirming evidence with MD = 0.8
- Then CF = MB - MD = 0.19, i.e., many sources of confirmation have been almost completely offset by a single disconfirming item
Certainty Factors

To de-sensitize this effect, the definition of CF was subsequently modified to

$$\text{CF}[h,e] = \frac{\text{MB}[h,e] - \text{MD}[h,e]}{1 - \min[\text{MB}[h,e], \text{MD}[h,e]]}$$
Certainty Factors

- If we are only interested in updating CFs without retaining MBs and MDs, we can perform incremental updating using

\[
CF_{\text{COMBINE}} = \begin{cases}
CF_1 + CF_2 \cdot (1 - CF_1) & \text{if both } > 0 \\
CF_1 + CF_2 \cdot (1 + CF_1) & \text{if both } < 0 \\
\frac{CF_1 + CF_2}{1 - \min(|CF_1|, |CF_2|)} & \text{otherwise}
\end{cases}
\]
Certainty Factors

- CFs may be used
 * to direct a best-first search
 * to control search explicitly
 * to prune the search
 - e.g., to drop goals when their CFs fall within the range [-0.2, +0.2]
 * to rank order hypotheses
Certainty Factors

- Durkin recommends
 * Obtain CFs from expert’s use of qualified terms
 * Don’t elicit CFs directly
 * Avoid deep inference chains (because approximate departs increasingly from probabilistic values)
 * Avoid many rules with the same hypothesis
 * Avoid rules with many premises - split into multiple rules
Adam (1976) criticized certainty factors

* CF associated with a hypothesis by MYCIN does not correspond to a simple probability model based on Bayes’ rule
 - did S & B (1975) claim that it did?

* Degrees of belief from different evidence cannot always be chosen independently
 - e.g., absolute diagnostic indicators

* min and max are not always appropriate for conjunctions
 - e.g., mutually exclusive alternatives
Certainty Factors

* CF ranking may reverse probability ranking

• Suppose

\[P(h_1) = 0.8 \quad P(h_2) = 0.2 \]

\[P(h_1 | e) = 0.9 \quad P(h_2 | e) = 0.8 \]

• Note

\[P(h_1 | e) = 0.9 > P(h_2 | e) = 0.8 \]

• But

\[CF(h_1, e) = \frac{P(h_1 | e) - P(h_1)}{1 - P(h_1)} = \frac{0.9 - 0.8}{0.2} = 0.5 \]

\[CF(h_2, e) = \frac{P(h_2 | e) - P(h_2)}{1 - P(h_2)} = \frac{0.8 - 0.2}{0.8} = 0.75 \]

• Hence

\[CF(h_1, e) < CF(h_2, e) \]
Certainty Factors

* Transitivity across chains of reasoning is not generally valid
* CFs are defined from MBs and MDs in terms of *increases* or *decreases* in belief, but elicited for MYCIN as *absolute values*
Certainty Factors

- Heckerman (1986)
 * Provides an example to show that the S & B (1975) definition of CFs, in conjunction with the rules for combining (incremental updating), lead to non-commutativity.
 * His conclusion from this is that we should take desirable properties of CFs as axiomatic, retain the combination rules, and seek an alternative formulation of CFs in probabilistic terms.
Certainty Factors

- **Heckerman (1986)**
 - Axiomatizes the “desiderata” for certainty factors using a somewhat modified (simplified) notation, but formally conditioning on prior evidence,
 - Exhibits an example of non-commutativity
 - States a formal requirement for a probabilistic interpretation of CFs
 - Gives the odds-likelihood form of Bayes’ Theorem

\[
O(h|e,e_p) = \frac{P(e|h,e_p)}{P(e|\neg h,e_p)} \cdot O(h|e_p) = \lambda(h,e,e_p) \cdot O(h|e_p)
\]
Certainty Factors

- **Heckerman (1986)**
 * Defines conditional independence of e and e_p given H and $\neg H$
 * Shows that λ is a candidate for a probabilistic interpretation of CFs except that it ranges from 0 to ∞
 * Shows that any monotonic increasing transformation of the likelihood ratio satisfying
 \[
 F\left(\frac{1}{x}\right) = -F(x) \quad \text{and} \quad F(\infty) = 1
 \]
 is a probabilistic interpretation for CFs (and conversely)
Certainty Factors

- Heckerman (1986)
 * Gives specific examples of such transformations
 * Observes that evidence combined using the S & B combination functions is required to be conditionally independent given both the hypothesis and its negation
 * Argues by example that the latter condition often fails in practice
 * Introduces axioms for sequential combination (corresponding to strength of evidence in S & B)
Certainty Factors

- Heckerman (1986)
 * Shows that these new axioms do not further constrain probabilistic interpretations of CFs
 * Demonstrates that although CFs have been applied to non-tree inference networks, updating is valid only in tree structures (rarely applicable in complex practical situations)
Certainty Factors

- Rules may conveniently be organized as an inference net, e.g.,
Certainty Factors

- **Rules:**
 - * R1: A v B --> C \(\text{CF} = 0.8\)
 - * R2: D --> E \(\text{CF} = 0.7\)
 - * R3: C & E --> F \(\text{CF} = 0.9\)

- **Facts**
 - * A \(\text{CF} = 0.4\)
 - * B \(\text{CF} = 0.6\)
 - * D \(\text{CF} = 0.9\)
 - * C,E \(\text{CF} = 0\)
 - * F \(\text{CF} = 0.2\)
Certainty Factors

- \(CF(A \lor B) = \max(0.4, 0.6) = 0.6 \)
- \(CF(R1') = 0.8 \times 0.6 = 0.48 \)
- \(CF(C|A \lor B) = 0 + 0.48 \times (1 - 0) = 0.48 \)
- \(CF(R2') = 0.7 \times 0.9 = 0.63 \)
- \(CF(E|D) = 0 + 0.63 \times (1 - 0) = 0.63 \)
- \(CF (C \land E) = \min (0.48, 0.63) = 0.48 \)
- \(CF(R3') = 0.9 \times 0.48 = 0.432 \)
- \(CF(F|C \land E) = 0.2 + 0.432 \times (1 - 0.2) = 0.5456 \)
We have already seen

\[O(h|e) = \frac{P(e|h)}{P(e|\neg h)} \cdot O(h) = \lambda(h,e) \cdot O(h) \]

Now, defining the Likelihood of Sufficiency by

\[LS = \frac{P(e|h)}{P(e|\neg h)} \text{ we can write } O(h|e) = LS \cdot O(h) \]
Similarly, if we define the Likelihood of Necessity by

$$\text{LN} = \frac{P(\neg e|h)}{P(\neg e|\neg h)}$$

we can write

$$O(h|\neg e) = \text{LN} \cdot O(h)$$

This enables us to develop rules of the form:

IF \(e \) **THEN** \(h \) (\text{LS, LN})

with both factors provided by an expert.
Mathematically, we have the constraints

\[\begin{align*}
 \text{LS} > 1 & \implies \text{LN} < 1 \\
 \text{LS} < 1 & \implies \text{LN} > 1 \\
 \text{LS} = 1 & \implies \text{LN} = 1
\end{align*} \]

but real-world problems may contradict this

More generally, if we are uncertain of \(e \) itself, and it depends on observed evidence \(e' \), we can make adjustments.
The probability of h given our belief e' is

$$P(h|e') = P(h|e) \cdot P(e'|e) + P(h|\neg e) \cdot P(\neg e|e')$$

from which the following derive

$$P(e'|e) = P(e) \Rightarrow P(h|e') = P(h)$$

e true $\Rightarrow P(e|e') = 1$ and $P(h|e') = P(h|e)$

e false $\Rightarrow P(\neg e|e') = 1$ and $P(h|e') = P(h|\neg e)$

which in turn define a linear relationship between $P(h|e')$ and $P(e|e')$
Real-world situations may result in experts providing values that contradict these assumptions, and some adjustment therefore needs to be made.

Duda et al. proposed an *ad hoc* assumption to relate $P(h|e')$ and $P(e|e')$ following a piecewise linear function.

This lead to PROSPECTOR.
PROSPECTOR

- PROSPECTOR uses two simple functions to avoid inconsistencies:

 \[P(h|e') = P(h|\neg e) + \frac{P(e'|e)}{P(e)} \cdot (P(h) - P(h|\neg e)) \quad \text{for } 0 \leq P(e'|e) \leq P(e) \]

 \[P(h|e') = \frac{P(h) - P(h|e) \cdot P(e)}{1 - P(e)} + P(e'|e) \cdot \frac{P(h|e) - P(h)}{1 - P(e)} \quad \text{for } P(e) \leq P(e'|e) \leq 1 \]

- PROSPECTOR is an expert system that assists geologists in mineral deposit exploration
A PROSPECTOR network is a set of nodes representing evidence or hypotheses and links connecting the nodes together with uncertain relationships represented by LS or LN values and prior probabilities for the nodes.

Probabilities are propagated upward to the topmost node.
Where multiple nodes affect a single hypothesis, conditional independence is assumed, and rules combine conjunctively or disjunctively

* **Conjunctive rules**
 - each e_i is based on the partial evidence e_i'
 - PROSPECTOR assumes $P(e|e') = \min \{ P(e_i|e') \}$
 - the resulting value is combined using the linear function given above

* **Disjunctive rules**
 - as above, but using max instead of min
PROSPECTOR

- Updating odds

* Each time new evidence is provided, the odds are updated, assuming conditional independence

\[
O(h|e_1', e_2', ..., e_n') = \prod_{i=1}^{i=n} \text{LS}_i \cdot O(h) \quad \text{where} \quad \text{LS}_i' = \frac{P(e_i|h)}{P(e_i|\neg h)}
\]

\[
O(h|\neg e_1', \neg e_2', ..., \neg e_n') = \prod_{i=1}^{i=n} \text{LN}_i \cdot O(h) \quad \text{where} \quad \text{LN}_i' = \frac{P(\neg e_i|h)}{P(\neg e_i|\neg h)}
\]
Beliefs were elicited from users of PROSPECTOR using certainty measures, which were subsequently converted to conditional probabilities using the same piecewise linear approach outlined earlier.
Using probabilities directly is a powerful but challenging technique

* Probabilities must be known
* Probabilities must be updated
* Total probability must equal unity
* Conditional independence is required
PROSPECTOR

- PROSPECTOR incorporates many simplifying assumptions, but it is still a demanding system.
- A large number of probabilities are still typically required to be provided:
 * difficult to obtain
 * computationally expensive
- Need to restart when new hypotheses are added: there is no incremental updating.
- Such a system is called *intensional* or *global* - by contrast, MYCIN is *extensional* and has a *modular* structure.
Prospector

- Other concerns about the updating methods
 - Rednault et al. (1981)
 - If A and B are intersections of the evidence $e_1 \ldots e_m$, then they are independent
 - Hussain (1972) sought to show
 - for exhaustive and mutually exclusive hypotheses $h_1 \ldots h_n$ and $e_1 \ldots e_m$ conditionally independent, no updating is possible
 - Glymour (1985)
 - gave a counter-example to disprove this
 - Johnson (1986)
 - showed that multiple updating of any hypothesis is impossible; i.e., there is at most one piece of evidence for which posteriors not the same as the prior
Belief Functions

- The standard text for definitions, etc. is, of course:

Belief Functions

A belief function on a frame Θ is a function $\text{Bel}: 2^\Theta \rightarrow [0, 1]$ such that:

1. $\text{Bel}(\emptyset) = 0$
2. $\text{Bel}(\Theta) = 1$
3. $\text{Bel}(A_1 \cup \ldots \cup A_n) \geq \sum_i \text{Bel}(A_i) - \sum_{i<j} \text{Bel}(A_i \cap A_j) + \ldots + (-1)^{n+1} \text{Bel}(A_1 \cap \ldots \cap A_n)$

Plausibility is defined by $\text{Pl}(A) = 1 - \text{Bel}(\sim A)$
Belief Functions

Basic probability assignments are functions $m : 2^\Theta \rightarrow [0, 1]$ such that:

1. $m(\emptyset) = 0$
2. $\sum_{A \subseteq \Theta} m(A) = 1$

Then we may define $\text{Bel}(A) = \sum_{B \subseteq A} m(B)$
Belief Functions

Example:

* Consider a frame with three possible outcomes \(\{a, b, c\} \)

* Suppose we are given the following basic probability assignment:

\[
\begin{align*}
 m(\{a\}) &= .1; \\
 m(\{b\}) &= .1; \\
 m(\{c\}) &= .1; \\
 m(\{a, b\}) &= .1; \\
 m(\{a, c\}) &= .2; \\
 m(\{b, c\}) &= .3; \\
 m(\{a, b, c\}) &= .1
\end{align*}
\]
Belief Functions

<table>
<thead>
<tr>
<th>Bpa</th>
<th>Bel</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>0</td>
</tr>
<tr>
<td>${a}$</td>
<td>0.1</td>
</tr>
<tr>
<td>${b}$</td>
<td>0.1</td>
</tr>
<tr>
<td>${c}$</td>
<td>0.1</td>
</tr>
<tr>
<td>${a,b}$</td>
<td>0.1</td>
</tr>
<tr>
<td>${a,c}$</td>
<td>0.2</td>
</tr>
<tr>
<td>${b,c}$</td>
<td>0.3</td>
</tr>
<tr>
<td>${a,b,c}$</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Current Topics in Accounting Research

February 23, 2011 Dr. Peter R. Gillett

58
Belief Functions

<table>
<thead>
<tr>
<th>Bpa</th>
<th>Bel</th>
<th>Pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>∅</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{a}</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>{b}</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>{c}</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>{a,b}</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>{a,c}</td>
<td>.2</td>
<td>.4</td>
</tr>
<tr>
<td>{b,c}</td>
<td>.3</td>
<td>.5</td>
</tr>
<tr>
<td>{a,b,c}</td>
<td>.1</td>
<td>1</td>
</tr>
</tbody>
</table>
Belief Functions

- Bpas may be recovered from Bel functions using

\[m(A) = \sum_{B \subseteq A} (-1)^{|A-B|} \text{Bel}(B) \]
Belief Functions

- The *commonality* function is a function
 \[Q : 2^\Theta \to [0, 1] \]
 defined by
 \[Q(A) = \sum_{A \subseteq B} m(B) \]

- Bpas may be recovered from commonality functions using
 \[m(A) = \sum_{A \subseteq B} (-1)^{|B - A|} Q(B) \]
Belief Functions

<table>
<thead>
<tr>
<th>Bpa</th>
<th>Bel</th>
<th>Pl</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>∅</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{a}</td>
<td>.1</td>
<td>.1</td>
<td>.5</td>
</tr>
<tr>
<td>{b}</td>
<td>.1</td>
<td>.1</td>
<td>.6</td>
</tr>
<tr>
<td>{c}</td>
<td>.1</td>
<td>.1</td>
<td>.7</td>
</tr>
<tr>
<td>{a,b}</td>
<td>.1</td>
<td>.3</td>
<td>.9</td>
</tr>
<tr>
<td>{a,c}</td>
<td>.2</td>
<td>.4</td>
<td>.9</td>
</tr>
<tr>
<td>{b,c}</td>
<td>.3</td>
<td>.5</td>
<td>.9</td>
</tr>
<tr>
<td>{a,b,c}</td>
<td>.1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Belief Functions

- Recall that the bpa function can be uniquely recovered from Pl, Bel or Q
- In fact, we can convert any one of the four representations uniquely into any of the others
- These conversions are examples of Möbius transforms
- There are Fast Möbius Transforms to do this efficiently (see Kennes)
Belief Functions

bpa \rightarrow Bel
Q \rightarrow Pl

bpa \leftarrow Bel
Q \leftarrow Pl
Belief Functions

- In expert systems based on belief functions:
 * user inputs are often in the form of bpas
 * propagation is most efficient implemented via commonalities
 * marginalization is most efficient implemented via Bel functions
 * output is often desired as Bel or Pl functions
Combining Belief Functions

- Dempster’s Rule
 * Consider two belief functions given by their bpas as follows:

 \[
 m_1(\{a\}) = .5; m_1(\{\sim a\}) = .3; m_1(\{a, \sim a\}) = .2;
 \]

 \[
 m_2(\{a\}) = .7; m_1(\{\sim a\}) = .2; m_1(\{a, \sim a\}) = .1
 \]
Combining Belief Functions

<table>
<thead>
<tr>
<th></th>
<th>(m_1)</th>
<th>(m_2)</th>
<th>(m_1 \otimes m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({ a })</td>
<td>0.5</td>
<td>0.7</td>
<td>(0.7 \times 0.5 = 0.35)</td>
</tr>
<tr>
<td>({ \sim a })</td>
<td>0.3</td>
<td>0.2</td>
<td>(0.7 \times 0.3 = 0.21)</td>
</tr>
<tr>
<td>({ a, \sim a })</td>
<td>0.2</td>
<td>0.2</td>
<td>(0.7 \times 0.2 = 0.14)</td>
</tr>
</tbody>
</table>

\[
\begin{array}{ccc}
\{ a \} & 0.7 & 0.7 \times 0.5 = 0.35 \\
\{ \sim a \} & 0.2 & 0.2 \times 0.5 = 0.10 \\
\{ a, \sim a \} & 0.1 & 0.1 \times 0.5 = 0.05 \\
\end{array}
\]

\[
m_1 \otimes m_2 \left(\{ a \} \right) = \frac{0.35 + 0.14 + 0.05}{1 - (0.21 + 0.10)} = 0.783
\]

\[
m_1 \otimes m_2 \left(\{ \sim a \} \right) = \frac{0.06 + 0.04 + 0.03}{1 - (0.21 + 0.10)} = 0.188
\]

\[
m_1 \otimes m_2 \left(\{ a, \sim a \} \right) = \frac{0.02}{1 - (0.21 + 0.10)} = 0.029
\]
Note, however, the following:

<table>
<thead>
<tr>
<th></th>
<th>m₁</th>
<th>Q₁</th>
<th>m₂</th>
<th>Q₂</th>
<th>Q₁xQ₂</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a}</td>
<td>.5</td>
<td>.7</td>
<td>.7</td>
<td>.8</td>
<td>.56</td>
<td>.54</td>
</tr>
<tr>
<td>{~a}</td>
<td>.3</td>
<td>.5</td>
<td>.2</td>
<td>.3</td>
<td>.15</td>
<td>.13</td>
</tr>
<tr>
<td>{a,~a}</td>
<td>.2</td>
<td>.2</td>
<td>.1</td>
<td>.1</td>
<td>.02</td>
<td>.02</td>
</tr>
</tbody>
</table>

After normalization, these are the same values as derived from Dempster’s Rule.
Combining Belief Functions

- In expert system applications, therefore, it is efficient to:
 - use Fast Möbius Transforms to convert bpas to commonalities
 - combine the commonalities by pointwise multiplication
 - (eventually) use Fast Möbius Transforms to convert the results back to bpas or other desired outputs
Types of Belief Functions

- If A is a subset of the frame Θ of a belief function, then A is a focal element if $m(A) > 0$
- The core of a belief function is the union of all its focal elements
- If, for some subset A, $m(A) = s$ and $m(\Theta) = 1 - s$ then m is a simple support function
- Thus a simple support function has only one focal element other than the frame itself
Types of Belief Functions

- A belief function that is the combination of one or more simple support functions is called a *separable support function*.

- A belief function that results from marginalizing a separable support function may not itself be separable; it is called a *support function*; Shafer suggests these are fundamental for the representation of evidence.
Types of Belief Functions

- Simple support functions
 \[\subset \]
- Separable support functions
 \[\subset \]
- Support functions
 \[\subset \]
- Belief functions

- A belief function whose focal elements are nested is called a consonant belief function
Types of Belief Functions

- A belief function that is not a support function is called a quasi support function.
- Quasi support functions arise as the limits of sequences of support functions.
- A belief function for which \(\text{Bel}(A \cup B) = \text{Bel}(A) + \text{Bel}(B) \) whenever \(A \cap B = \emptyset \) is called a Bayesian belief function.
- Equivalently, a Bayesian belief function is a belief function all of whose focal elements are singletons.
- Bayesian belief functions are quasi support functions (except when \(\text{Bel}(\{\theta\}) = 1 \) for some \(\theta \in \Theta \).)
Belief Functions in Expert Systems

- Belief functions can be propagated locally in Join Trees (Markov Trees) using the Shenoy-Shafer algorithm (coming soon to a class near you . . .)
- Belief functions can also be propagated locally in Junction Trees using the Aalborg architecture; this requires division (of commonalities) and intermediate results may not be interpretable
- In practice, it is most efficient to perform combination using commonalities and marginalization using Bels
Belief Functions in Expert Systems

- Xu and Kennes give efficient algorithms for carrying out belief function combination, for bit-array representations of subsets, and for Fast Möbius Transforms.
- The bit-array representation includes algorithms for testing subsets, forming intersections, unions, etc directly with the bit-arrays.
- Full details of the Fast Möbius Transform algorithms are given in Kennes.
Belief Functions in Expert Systems

- Efficient implementations are especially important for belief functions
 - n binary variables generate a joint space with 2^n configurations in probability systems
 - n binary variables generate a joint space with 2^{2^n} potential focal elements in belief function systems
Belief Functions in Expert Systems

- The Shafer & Srivastava paper we read for today sets out extensive arguments why belief functions might be considered superior to probabilities for certain applications, such as auditing.
- Among these reasons, the one that first attracted me to study belief functions when I was building an Expert System (ADAPT) is the argument that they better represent ignorance.
- In auditing, for example, accounts receivable, insufficient replies from customers might lead us to assess a probability of, say, only 70% that accounts receivable exist.
- Probability theory then forces us to assess a 30% probability that they do not exist, despite the fact that there is no evidence they do not exist - merely insufficient evidence that they do.
Belief Functions in Expert Systems

- Belief functions allow us to assign a 70% bpa to existence, and the balance to the whole frame, representing ignorance.
- In probability theory there would be no difference if some of the missing customers in fact wrote to deny the existence of the balance.
- Using belief functions, however, we could assign some part of the bpa to represent contrary evidence, and the remainder to ignorance.
 - perhaps \(m(\text{exist}) = 0.7; m(\sim \text{exist}) = 0.2; m(\text{exist,} \sim \text{exist}) = 0.1 \)
- Of course, in belief function terms, complete ignorance is represented by \(m(\text{exist,} \sim \text{exist}) = 1 \): it must be one of the outcomes, we don’t know which, or which is more likely.
- Probabilistically, ignorance is represented as \(P(\text{exist}) = P(\sim \text{exist}) = 0.5 \) and we have to assume the outcomes equally likely.
Bayesian and Belief-Function Formalisms

- Bayesian formalism
 - *Objective probabilities*
 - Repeated trials make no sense in auditing
 - *Subjective probabilities*
 - Additivity argument
 - based on two-sided betting rates
 - Problem of small worlds
 - Problem of non-existent preferences
 - Betting rate argument for conditioning
 - *Constructive probabilities*
Bayesian and Belief-Function Formalisms

- Belief-function formalism
 - Degrees of belief
 - Independence
 - Compatibility relations
 - Dempster’s Rule
 - Constructive interpretation

- Comparison of two formalisms
 - Bayes as a special case
 - Representation of ignorance
Belief Function Formulas for Audit Risk

- Audit risk model
 * Inherent Risk
 * Analytical Procedures
 * Internal Controls
 * Tests of Details
 * Evidential Networks
- Review of Belief-function approach
- p. 259 – audit risk is Plausibility
Belief Function Formulas for Audit Risk

- For the evidential network illustrated in the paper
 - Section IV defines m-values at each node
 - Section V gives explicit formulae for audit risk
 - A small example is calculated

- Note the acknowledgements on the first page – and the date of the paper
 - Yes, I have checked ALL these formulae and symbols!!!

- Note that the illustration is an “AND” tree
Aggregating Evidence in Auditing

- Reviews problems with probability models
- Discusses structure of audit risk
- Develops a propagation scheme
 * Draw a network
 * Express the impact of the evidence as belief functions
 * Construct a Markov tree (now more commonly called a Join Tree)
 * Propagate the belief functions in the Markov Tree
Aggregating Evidence in Auditing

- Illustrates the propagation scheme using an example
 * Evidence 4 prevents the original network from having a tree structure
 * The relational node is still an “AND” node
 * Note that there is also an issue regarding determining the m-values for Evidence 4 from the marginals, and the method adopted in this paper is not a conservative choice

- More complex illustrations follow, using software
Homework 4

- Homework 4 is a set of simple exercises using your new-found knowledge of belief functions.
- The important thing is not the answers, but your workings and whether you understand the manipulations you are carrying out – so by all means get help, but do the work yourself.
- Post your solutions as a WORD document on Blackboard as usual.