Solve three of the following four problems.
Indicate on which three you wish to be graded and email it to me at: mnk@rutgers.edu.

Good Luck!

Problem 1:

1. Let p and q be real valued column n-vectors with $p' 1 = 0$. Prove the following:

$$|p' q| \leq \max_i \{q_i\} - \min_i \{q_i\}$$

$$= \max_{i,j} |q_i - q_j| \frac{1}{2} \sum_{i=1}^n |p_i|$$

$$= \max_{i,j} |q_i - q_j| \frac{1}{2} \sum_{i=1}^n |p_i|$$

2. Let $P = [p_{ij}]_{i,j=1,...,n}$ be an $n \times n$, stochastic matrix 1, $w = [w_i]$ be a real-valued column n-vector and let

$$v = Pw.$$

Show that:

$$\max_{i,j} |v_i - v_j| \leq h \max_{i,j} |w_i - w_j|$$

where

$$h = h(P) = \frac{1}{2} \max_{i,j} \sum_{k=1}^n |p_{ik} - p_{jk}| \in [0, 1].$$

3. Let $P^{n-1} = [p_{ij}^{(n-1)}]$, for $n \geq 1$, with $P^0 = I$ show that, for all n and k:

$$\max_{i,j} |p_{ik}^{(n)} - p_{jk}^{(n)}| \leq h(P)^n$$

Note that if $P > 0$, i.e., all entries of P are positive (or if there exists an $m > 1$ such that $P^m > 0$, which is true if the Markov chain with matrix P is irreducible) then $h(P) < 1$ and then the last inequality implies that as $n \to \infty$ all rows of P^n tend the same limit.

4. For fixed k show that

(a) $\max_i p_{ik}^{(n)}$ is decreasing in n,

(b) $\min_i p_{ik}^{(n)}$ is increasing in n. 2 3

1 i.e., $P \geq 0$, $P 1 = 1$.

2 It follows [since both sequences are bounded] that both have limits as $n \to \infty$. When $h(P) < 1$, all rows of P^n tend to the same limiting probability vector. This property of all rows of P^n tending to the same limiting probability distribution is called “strong ergodicity”.

3 Notice that the argument to prove 4(a,b) uses the “backward” form: $P^n = P P^{n-1}$. Thus, when $h(P) < 1$, we can obtain the ergodicity of a finite homogeneous Markov chain, at geometric rate of convergence without the use of Perron-Frobenius theory of non-negative matrices.
Problem 2: (Strong Markov Property). Show that if τ is a stopping time for a time homogenous Markov Chain: $\{X_n\}_{n \geq 0}$ on a countable set S then, for any $m \geq 1$, j, i, i_{m-1},\ldots,i_0:

$$P[X_{\tau + m + 1} = j | X_{\tau + m} = i, X_{\tau + m - 1} = i_{m-1},\ldots,X_{\tau} = i_0, \tau = n] = P[X_1 = j | X_0 = i].$$

Problem 3: (Work in a queueing system). The work in a queueing system at any time is defined as the sum of the remaining service times of all customers in the system at that time. For the $M/G/1$ queueing system in steady state compute the mean and variance of the work in the system.

Problem 4: (Optimal Stopping in financial markets.) In financial markets, options are traded and their values change in relationship to the price of the underlying stock. A call option gives the owner the right to purchase an asset, such as shares of common stock, at a fixed “strike” price W at any time prior to a specified expiration date. We assume that a single call corresponds to a right for 100 shares.

A put option gives the holder the right to sell shares of an asset, such as shares of common stock, at a fixed “strike” price W at any time prior to a specified expiration date.

Assume that the probabilities p_{ij} that the next time instant’s $(t + 1)$ stock price is equal to j given that the current (time t) stock price is i are known and let c_0 denote the fixed (per transaction cost).

Formulate the problem of when to exercise a single call and a single put option as an optimal stopping problem, i.e., give:

1. State space and Actions
2. Rewards
3. System Dynamics
4. DP equations, in terms of the value function $v(t)$, $t = 0, 1, \ldots, N$, where t is the time remaining to the expiration time.

4 i.e., given $\{\tau = n\}$ and $X_\tau = i$ the process $\{X_{\tau + m}\}_{m \geq 0}$ is probabilistically the same as the process $\{X_m\}_{m \geq 0}$ with $X_0 = i$

5 For example, one might purchase a call option to buy 100 shares of ASC company at $30 per share at or before May 30. Time is discrete $t = 0, \ldots, N$, where N represents the expiration time of May 30. If at any time t, the stock price reached $31 per share, then one may exercise the option and buy 100 shares of ASC company stock for 3000 and immediately sell them for 3100 to make a profit of 100 less transaction costs (commissions). When the stock price is below $30 per share, one would not exercise the option.

6 For example one might purchase a put option to sell 100 shares of ASC company at $30 per share at or before May 30. Time is discrete $t = 0, \ldots, N$, where N represents the expiration time of May 30. If at any time t, the stock price reached 29 per share, then one may exercise the option and sell 100 shares of ASC company stock for 3000 having bought them for 2900 to make a profit of 100 less transaction costs (commissions). When the stock price is above 30 per share, one would not exercise the option.

7 Note that $v(N)$ is the “fair price” of the option.