ADAPTIVE DISPOSAL MODELS*

C. Derman
Columbia University
New York, N. Y.

G. J. Lieberman.
Stanford University
Stanford, California

S. M. Ross
University of California, Berkeley
Berkeley, California

ABSTRACT
This paper reconsiders the classical model for selling an asset in which offers come in daily and a decision must then be made as to whether or not to sell. For each day the item remains unsold a continuation (or maintenance cost) c is incurred. The successive offers are assumed to be independent and identically distributed random variables having an unknown distribution F. The model is considered both in the case where once an offer is rejected it may not be recalled at a later time and in the case where such recall of previous offers is allowed.

1. INTRODUCTION

This paper reconsiders the classical model for selling an asset in which offers come in daily and a decision must then be made as to whether or not to sell. For each day the item remains unsold a continuation (or maintenance cost) c is incurred. The successive offers are assumed to be independent and identically distributed random variables having an unknown distribution F. The model is considered both in the case where once an offer is rejected it may not be recalled at a later time and in the case where such recall of previous offers is allowed.

In Section 2 we show how bounds on the optimal policy may be obtained when some partial information about F is available. In particular, we show that if F, the distribution of offers, satisfies the NWUE (new worse than used in expectation) property defined as

$$E_F [X - a | X > a] \geq E_F [X]$$

for all $a \geq 0$,

then the optimal policy has a monotonic relationship with the optimal policy in the case where the distribution of offers is exponential with the same mean as F.

*This research was supported in part by the Office of Naval Research under contracts N00014-75-C-0620 with Columbia University, N00014-75-C-0561 with Stanford University, and N00014-68-A-0200-1036 with the University of California, and by the U.S. Army Research Office-Durham under contract DAHC04-74-C-00226 with the University of California.
In Sections 3 and 4 we consider a Bayesian version of this model by supposing that \(F \) is known to be one of the distributions \(F_1, F_2, \ldots, F_n \) with given initial prior probabilities. In Section 3 we do not allow, and in Section 4 we do allow, the recall of old offers. In both cases we provide bounds on the optimal policy in terms of the optimal policies in the case where it is known which of the \(F_i \) is equal to \(F \). This Bayesian format has previously been considered in [3], which assumed that \(F \) was a normal random variable with known variance and imposed a normal prior distribution on the mean of \(F \). As our model imposes no parametric condition on \(F \) in the prior distribution, the type of results we obtain are somewhat different than those in [3].

2. INDEPENDENT AND IDENTICALLY DISTRIBUTED OFFERS FROM AN UNKNOWN DISTRIBUTION WITH PARTIAL INFORMATION

If the successive offers were independent and identically distributed random variables having known distribution \(F \), then it is well-known [2] that the policy that maximizes the total expected return, both with and without recall, is to accept an offer \(x \) if and only if \(x \geq x_F \), where \(x_F \) is the smallest value such that

\[
x_F \geq \left[\int_{x_F}^{\infty} x dF(x) - c \right] / [1 - F(x_F)].
\]

If \(F \) is continuous, this reduces to

\[
c = \int_{x_F}^{\infty} (x - x_F) \, dF(x).
\]

The optimal expected return is \(x_F + c \).

We shall start our by comparing the optimal critical number for two different distributions. To begin we need the following definition:

DEFINITION: For any two probability distributions \(F \) and \(G \) we say that \(F \preceq_p G \) if

\[
\int f(x) \, dF(x) \leq \int f(x) \, dG(x)
\]

for all increasing convex functions \(f \).

If \(F \) and \(G \) have the same means, then \(F \preceq_p G \) intuitively means that \(F \) has less variability than \(G \).

PROPOSITION 1: If \(F \preceq_p G \) then \(x_F \leq x_G \).

PROOF: \(x_G \) is the smallest value satisfying

\[
c \geq E_G [(X - x_G)^+].
\]

Now

\[
E_G [(X - x_G)^+] \geq E_F [(X - x_G)^+],
\]

since \(f(x) = (x - x_G)^+ \) is an increasing convex function. Hence,

\[
c \geq E_F [(X - x_G)^+],
\]

implying that \(x_F \leq x_G \).

Proposition 2 is concerned with the return from a nonoptimal policy:
PROPOSITION 2: If \(x \leq x_F \), then the policy that accepts the first offer that is at least as large as \(x \) has a return that is at least \(x + c \).

PROOF: To prove the above, consider the expected difference between the optimal policy that uses the critical number \(x_F \) and the above policy that uses the critical number \(x \). By conditioning on whether an offer between \(x \) and \(x_F \) occurs before or after an offer greater than \(x_F \), we see that the expected difference is at most \(x_F - x \) in the former case (since the expected return from the optimal policy starting at the time of this offer between \(x \) and \(x_F \) is equal to \(x_F + c - c = x_F \)) and it is 0 in the latter case. Hence, the result follows.

DEFINITION: We say that the distribution \(F \), with \(F(0-) = 0 \), is NWUE if
\[
\int_a^\infty \frac{F(x)}{F(a)} \, dx \geq \int_0^\infty \bar{F}(x) \, dx \text{ for all } a \geq 0,
\]
where \(\bar{F}(x) = 1 - F(x) \). (If \(X \) is a random variable having distribution \(F \), then the above is equivalent to \(E[X - a | X > a] \geq E[X] \).)

PROPOSITION 3: If \(F \) is NWUE with mean \(\mu \), then
\[
E(\mu) \leq F,
\]
where \(E(\mu) \) is an exponential distribution with mean \(\mu \).

PROOF: It is easy to show that \(F \geq G \) is equivalent to
\[
\int_a^\infty \bar{F}(x) \, dx \geq \int_a^\infty \bar{G}(x) \, dx \text{ for all } a.
\]
Thus, we have to show that,
\[
\int_a^\infty \bar{F}(x) \, dx \geq \mu e^{-a/\mu}
\]
whenever \(F \) is NWUE. By the definition of NWUE we have
\[
\int_t^\infty \frac{\bar{F}(x)}{\mu} \, dx \geq \bar{F}(t)
\]
or, equivalently,
\[
\bar{F}(t)/\int_t^\infty \bar{F}(x) \, dx \leq 1/\mu.
\]
Integrating both sides of the above from 0 to \(a \) completes the proof.

We are now ready for the main theorem of this section.

THEOREM 1: If the unknown distribution \(F \) is known to be NWUE and to have mean \(\mu \), then
\[
x_F \geq \bar{x}
\]
and the policy which accepts the first offer of at least \(\bar{x} \) has return of at least \(\bar{x} + c \), where
\[
\bar{x} = -\mu \log (c/\mu).
\]

PROOF: The result follows immediately from Propositions 1, 2, and 3, since \(\bar{x} = x_F \) when \(F \) is an exponential distribution with mean \(\mu \).
REMARK: One instance in which the distribution of offers would be NWUE is the case in which there are many classes of potential customers and offers from each class follow an exponential distribution. Thus the distribution of offers would be a mixture of exponential distributions and the degenerate distribution at 0 (indicating no offer), and it would thus be NWUE (since a mixture of NWUE random variables is also NWUE) [1].

3. BAYESIAN MODEL WITHOUT RECALL OF PAST OFFERS

In this section we suppose that if an offer is rejected then it can never be accepted in the future. In addition, we suppose that, although the distribution \(F \) is not known with certainty, we do know that it is one of the distributions \(F_1, F_2, \ldots, F_n \), with given prior probabilities. We say that the state of the system is \((x, P)\) when \(x \) is the present offer under consideration and \(P = (P_1, \ldots, P_n) \) is the posterior probability vector, given all the information that we have accumulated up to that point (including the present offer \(x \)), as to which of the \(F_i \) is the actual distribution.

Also we define \(V(x, P) \) to be equal to the expected return from this day onward, given that the state today is \((x, P)\) and we employ an optimal policy. (If we assume as we do, that each of the \(F_i \) has a finite variance and \(c > 0 \) then it can be shown as in [2] that an optimal policy exists.)

The optimality equation thus takes the following form:

\[
V(x, P) = \max \{ x, V(P) - c \},
\]

where \(V(P) \), which represents the best you can do when the distribution is chosen by the prior probability vector \(P = (P_1, \ldots, P_n) \), satisfies

\[
V(P) = \sum P_j \int V(y, T_j P) \, dF_j(y),
\]

where

\[
T_j P = [(T_j P)_1, \ldots, (T_j P)_n]
\]

and

\[
(T_j P)_j = \text{Prob} \{ F_j | P, y \}
\]

\[
= \frac{P_j \, dF_j(y)}{\sum P_i \, dF_i(y)}.
\]

Furthermore, the optimal policy accepts the offer in state \((x, P)\) if and only if

\[
x \geq V(P) - c.
\]

PROPOSITION 4: \(V(P) \) is a convex function of \(P \).

PROOF: Recall that \(V(P) \) represents the best we can do when the distribution is chosen according to \(P \). Now suppose \(P = \lambda P^1 + (1 - \lambda) P^2 \), for some \(0 < \lambda < 1 \), and suppose that the distribution to be used is to be chosen according to the following two-stage experiment. First we flip a coin having probability \(\lambda \) of coming up heads. If the coin comes up heads, then we choose the distribution according to the prior probability \(P^1 \), and if it comes up tails then we use \(P^2 \). Now if we are not told the outcome of the coin flip then the problem is exactly the same as if the distribution was chosen according to \(P \) and thus the best we can do is \(V(P) \). On the other hand, if we are to be told about the outcome of the coin flip, then by conditioning on the outcome we see that our expected return if we play optimally is \(\lambda V(P^1) + (1 - \lambda) V(P^2) \). Hence, as additional information can not lower our expected return, we see that
and the result is proven.

Let \(x_i = x_{F_i}, \ i = 1, \ldots, n \):

COROLLARY 1: \(V(P) \leq \Sigma P_i x_i + c \).

PROOF: This follows directly from Proposition 4, since \(V(0,0,0,1,0,\ldots,0) = x_i + c \) (where the 1 is in the ith place).

PROPOSITION 5: If the present state is \((x, P)\), then

(i) if \(x \geq \Sigma P_i x_i \), it is optimal to accept \(x \),

(ii) if

\[
x < \Sigma P_i \left[\frac{\int_x^\infty y dF_i(y) - c}{1 - F_i(x)} \right],
\]

it is optimal to reject the offer \(x \),

(iii) if

\[
x < \Sigma P_i \int_{-\infty}^x y dF_i(y) - c,
\]

it is optimal to reject \(x \).

PROOF: (i) If \(x \geq \Sigma P_i x_i \), then, using Corollary 1, we have

\(x \geq V(P) - c \),

and (i) is established.

(ii) Suppose the present state is \((x, P)\), and consider the policy that accepts the first offer greater than \(x \). The expected return from this policy is

\[
\Sigma P_i \left[\frac{\int_x^\infty y dF_i(y)}{1 - F_i(x)} \frac{c}{1 - F_i(x)} \right],
\]

which follows by noting that, given that the distribution is \(F_i \), the expected number of additional offers that will be made until one is accepted is \(1/[1 - F_i(x)] \). Clearly, if \(x \) is less than this value, then it cannot be optimal to accept the present offer of \(x \).

(iii) The proof of (iii) is similar to that of (ii) in that it considers the return when in state \((x, P)\) if you accept the next offer, and it notes that if this return is greater than \(x \) then \(x \) should clearly not be accepted.

REMARK: It follows from part (ii) of the above proposition that if \(x < \min(x_1, \ldots, x_n) \) then it is always optimal to reject \(x \).

Let us now consider the special case where there are only two possible distributions, i.e., \(F_1 \) and \(F_2 \), and suppose \(x_1 \leq x_2 \). In this case the state can be represented as the pair \((x, P)\) where \(x \) is the present offer and \(P \) is the present probability (given all information, including \(x \), accumulated up to this point) that \(F_2 \) is the true distribution. In this case we have

THEOREM 2: \(V(P) \) is an increasing function of \(P \), \(0 \leq P \leq 1 \).
PROOF: Since \(V(P) \) is a convex function of \(P \) (Proposition 4), the result would follow if we could show that
\[
V(0) \leq V(P) \text{ for all } 0 \leq P \leq 1.
\]
Now \(V(0) = x_{F_1} + c \equiv x_1 + c \). Also, as it is always optimal to reject an offer less than \(\min(x_1, x_2) = x_1 \), it follows from the optimality equation that
\[
V(P) - c \geq x_1 \text{ for all } P,
\]
which proves the result.

Thus, when \(n = 2 \) and \(x_1 \leq x_2 \), it is optimal to accept the offer when in state \((x, P)\) if and only if \(x \geq h(P) \), where \(h(P) \equiv V(P) - c \) is an increasing convex function of \(P \) with \(h(0) = x_1, h(1) = x_2 \). Furthermore, bounds on \(h(P) \) are given by Proposition 5.

REMARK: There does not appear to be an analogue to Theorem 2 when there are more than 2 possible distributions. For instance, suppose that the distributions \(F_1, F_2, \ldots, F_n \) are stochastically increasing in the sense that \(F_i(t) \) is nonincreasing in \(t \) for each \(t \). If we define the probability vector \(P \) to be greater than or equal to the probability vector \(Q \), written \(P \geq Q \), if
\[
\sum_{i=1}^{\infty} P_i \leq \sum_{i=1}^{\infty} Q_i \text{ for each } j = 1, \ldots, n,
\]
then we might hope to prove that \(V(P) \geq V(Q) \). However, this need not be the case, as is indicated by the following example. Suppose \(F_1 \) puts all its weight on the value 0.9, \(F_2 \) puts all its weight on the value 1, and \(F_3 \) is the distribution of a random variable that takes on the value 1 with probability 0.99 and \((10)^{10} \) with probability 0.01, and suppose \(c = 1 \). Now, \(P \equiv (0, 0.9, 0.1) \geq Q \equiv (0.9, 0, 0.1) \), but it turns out that \(V(P) < V(Q) \), the reason being that under \(Q \) it only takes a single observation to determine the true \(F_i \), whereas this is not so under \(P \).

4. INDEPENDENT AND IDENTICALLY DISTRIBUTED OFFERS FROM AN UNKNOWN DISTRIBUTION WITH RECALL OF PAST OFFERS

In the previous section we assumed that once an offer was rejected by the decision maker then that offer immediately disappears. In this section, however, we consider the same model as in Section 3 but with the exception that an offer remains good indefinitely and may be accepted at any time.

It turns out that, when the distribution of offers is known, then the optimal policy in this case is identical to the one in which recalling past offers is not allowed. That is, the optimal policy is to accept the first offer that is at least as large as \(x_F \), and the expected return under the optimal policy is \(x_F + c \), when \(x_F \) is as defined in Section 2.

Consider now the case in which the distribution of offers is one of the distributions \(F_1, \ldots, F_n \), where the \(F_i \) is chosen according to some initial probability vector. The state of the system at any time can be defined by \((m, P) \), where \(m \) is the maximum offer that has been received up to that time and \(P \) is the posterior probability vector (given all offers up to that time, including any just made) of the true distribution. The optimality equation takes the form
\[
V(m, P) = \max \left\{ m, \sum \int_{0}^{\infty} V(m, T_y P) \, dF_i(y) + \int_{m}^{\infty} V(y, T_y P) \, dF_i(y) \right\} - c,
\]
where
\[
T_y P = [(T_y P)_1, \ldots, (T_y P)_n],
\]
and

\[(T, \mathbf{P})_j = \frac{P_j \, dF_j(y)}{\sum P_i \, dF_i(y)}.\]

While it follows from its definition that \(V(m, \mathbf{P})\) is an increasing function of \(m\) for fixed \(\mathbf{P}\), it is not immediately evident from the optimality equation that, if the offer \(m\) is accepted when in state \((m, \mathbf{P})\), then the offer \(m'\) is also accepted when in state \((m', \mathbf{P})\) whenever \(m' \geq m\). We now prove this.

Proposition 6: For fixed \(\mathbf{P}\), \(V(m, \mathbf{P}) - m\) is a nonincreasing function of \(m\).

Proof: Suppose \(m_1 < m_2\). Note that the distribution of the sequence of future offers is the same no matter whether the initial state is \((m_1, \mathbf{P})\) or \((m_2, \mathbf{P})\), since it only depends on \((x, \mathbf{P})\) through \(\mathbf{P}\). We can then conclude that if the initial state is \((m_1, \mathbf{P})\) then, by following throughout the optimal policy for the initial state \((m_2, \mathbf{P})\), our return when we stop is with in \(m_2 - m_1\) of what it would have been if the initial state were really \((m_2, \mathbf{P})\). Therefore,

\[V(m, \mathbf{P}) \leq \sum P_i \, V(m, x_i) = \sum P_i \, \max(m, x_i).\]

Corollary 2: If it is optimal to accept \(m_1\) when in state \((m_1, \mathbf{P})\), then it is optimal to accept \(m_2\) when in state \((m_2, \mathbf{P})\) whenever \(m_2 \geq m_1\).

Proof: If \(V(m_1, \mathbf{P}) = m_1\), then from Proposition 6

\[V(m_2, \mathbf{P}) - m_2 \leq 0.\]

This implies, from the optimality equation, that

\[V(m_2, \mathbf{P}) = m_2.\]

Proposition 7: For fixed \(m\), \(V(m, \mathbf{P})\) is a convex function of \(\mathbf{P}\).

Proof: The proof is identical to the proof of Proposition 4 in Section 3.

Corollary 3:

\[V(m, \mathbf{P}) \leq \sum P_i \, \max(m, x_i),\]

where \(x_i \equiv x_{F_i}\).

Proof: If we let \(e_i\) be the vector of zeros with a one in the \(i\)th place then

\[V(m, e_i) = \begin{cases} m & \text{if } m > x_i \\ x_i & \text{if } m < x_i. \end{cases}\]

Hence, from convexity

\[V(m, \mathbf{P}) \leq \sum P_i \, V(m, e_i) = \sum P_i \, \max(m, x_i).\]

Proposition 8: If the present state is \((m, \mathbf{P})\) then

(i) if \(m > \sum P_i \, \max(m, x_i)\) then it is optimal to accept \(m\).

(ii) if
\[
m < \Sigma P_i \left[\frac{\int_m^\infty y dF_i(y) - c}{1 - F_i(m)} \right]
\]
then it is optimal to look at another offer.

(iii) if
\[
m < \Sigma P_i \left[m F_i(m) + \int_m^\infty y dF_i(y) \right] - c
\]
then it is optimal to look at another offer.

PROOF: Part (i) follows directly from Corollary 3, while the proofs of parts (ii) and (iii) are identical to the corresponding results of Proposition 5 in Section 3.

Suppose now that \(p = 2 \) and \(x_1 \leq x_2 \). In this case we represent the state by \((m, P)\) when \(P \) is the posterior probability that \(F_2 \) is the true distribution.

THEOREM 3: \(V(m, P) \) is increasing in \(P \) for fixed \(m \).

PROOF: As in the corresponding proof of the previous section, we need to show that
\[
V(m, 0) \leq V(m, P).
\]
Now,
\[
V(m, 0) = \max(m, x_1).
\]
However,
\[
V(m, P) \geq m,
\]
and, as it follows from Part (ii) of Proposition 8 that it is never optimal to accept an offer less than \(x_1 \), we have
\[
V(m, P) \geq x_1.
\]
That is,
\[
m > x_1 \Rightarrow V(m, P) \geq x_1
\]
\[
m < x_1 \Rightarrow V(m, P) = V(x_1, P) > x_1,
\]
and the proof is complete.

Hence, when \(p = 2 \) and \(x_1 \leq x_2 \), it is optimal to accept \(m \) when in state \((m, P)\) if and only if \(m \geq m(P) \), where \(m(P) \) is an increasing convex function of \(P \) with \(m(0) = x_1 \), \(m(1) = x_2 \).

REFERENCES

