Solutions to problems from Introduction to Probability and Statistics textbook (by Ross).

Problem 10 (page 132)

Question

The joint probability density function of X and Y is given by

$$f(x, y) = \frac{6}{7} \left(x^2 + \frac{xy}{2} \right), \quad 0 < x < 1, 0 < y < 2$$

(a) Verify that this is indeed a proper joint density function.

(b) Compute the density function of X.

(c) Find $P(X > Y)$.

Solution

(a)

First we notice that $f(x, y)$ is non-negative for all "allowed" combinations of x and y. Next we check that it integrates to one,

$$\int_0^1 \int_0^1 f(x, y) \, dx \, dy = \int_0^1 \int_0^1 \frac{6}{7} \left(x^2 + \frac{xy}{2} \right) \, dx \, dy$$

$$= \int_0^1 \left[\frac{6x^3}{21} + \frac{6yx^2}{28} \right]_0^1 dy$$

$$= \int_0^1 \left[\frac{2x^3}{7} + \frac{3yx^2}{14} \right]_0^1 dy$$

$$= \int_0^1 \frac{2}{7} + \frac{3y}{14} \, dy$$

$$= \frac{2y}{7} + \frac{3y^2}{28} \bigg|_0^1$$

$$= 1$$
(b) For $0 < x < 1$ we have,

$$f_X(x) = \int_0^x f(x, y) \, dy$$

$$= \int_0^x \frac{6}{1} \left(x^2 + \frac{xy}{2} \right) \, dy$$

$$= \frac{6x^2y}{7} + \frac{3xy^2}{14} \bigg |_0$$

$$= \frac{12x^2}{7} + \frac{6x}{7}$$

(c) For x to be larger than y, y must be less than 1. So we have,

$$P(X > Y) = \int_{X>Y} f(x, y) \, dx \, dy$$

$$= \int_0^1 \int_y^1 \frac{6}{1} \left(x^2 + \frac{xy}{2} \right) \, dx \, dy$$

$$= \int_0^1 \left[\frac{2x^3}{7} + \frac{3x^2y}{14} \right]_y^1 \, dy$$

$$= \int_0^1 \frac{2y^3}{7} + \frac{3y^2}{14} - \frac{7y^3}{14} \, dy$$

$$= \frac{2y}{7} + \frac{3y^2}{28} - \frac{7y^4}{56} \bigg |_0$$

$$= \frac{2}{7} + \frac{3}{28} - \frac{7}{56}$$

$$= \frac{16}{56} + \frac{6}{56} - \frac{7}{56}$$

$$= \frac{15}{56} \approx .268$$

Problem 16 (page 133)

Question

Suppose that X and Y are independent continuous random variables. Show that

(a) $P(X + Y \leq a) = \int_{-\infty}^{\infty} F_X(a - y) f_Y(y) \, dy$

(b) $P(X \leq Y) = \int_{-\infty}^{\infty} F_X(y) f_Y(y) \, dy$

where f_Y is the density function of Y, and F_X is the distribution function of X.

Solution

$X + Y \leq a \implies X \leq a - Y$
(a)

\[P(X + Y \leq a) = \int_{x+y\leq a} f_X(x) \cdot f_Y(y) \, dx \, dy \]

\[= \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) \cdot f_Y(y) \, dx \, dy \]

\[= \int_{-\infty}^{\infty} f_Y(y) \int_{-\infty}^{a-y} f_X(x) \, dx \, dy \]

\[= \int_{-\infty}^{\infty} f_Y(y) \left[F_X(x) \right]_{-\infty}^{a-y} \, dy \]

\[= \int_{-\infty}^{\infty} f_Y(y) \left(F_X(a-y) - F_X(-\infty) \right) \, dy \]

\[= \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) \, dy \]

(b)

Similar to above, so I leave out some steps.

\[P(X \leq Y) = \int_{x\leq y} f_X(x) \cdot f_Y(y) \, dx \, dy \]

\[= \int_{-\infty}^{\infty} \int_{-\infty}^{y} f_X(x) \cdot f_Y(y) \, dx \, dy \]

\[= \int_{-\infty}^{\infty} F_X(y) f_Y(y) \, dy \]

Problem 25 (page 134)

Question

A total of 4 buses carrying 148 students from the same school arrive at a football stadium. The buses carry, respectively, 40, 33, 25, and 50 students. One of the students is randomly selected. Let \(X \) denote the number of students that were on the bus carrying this randomly selected student. One of the 4 bus drivers is also randomly selected. Let \(Y \) denote the number of students on her bus.

(a) Which of \(E[X] \) or \(E[Y] \) do you think is larger? Why?

(b) Compute \(E[X] \) and \(E[Y] \).

Solution

(a)

Discuss in class.

(b)

\[E[X] = 40 \cdot \frac{40}{148} + 33 \cdot \frac{33}{148} + 25 \cdot \frac{25}{148} + 50 \cdot \frac{50}{148} \]

\[= \frac{5814}{148} = \frac{2907}{74} \]

\[\approx 39.3 \]
\[E[Y] = 40 \cdot \frac{1}{4} + 33 \cdot \frac{1}{4} + 25 \cdot \frac{1}{4} + 50 \cdot \frac{1}{4} \]
\[= 148 \cdot \frac{1}{4} \]
\[= 37 \]

Problem 29 (page 135)

Question

Let \(X_1, X_2, \ldots, X_n \) be independent random variables having the common density function

\[f(x) = \begin{cases}
1, & 0 < x < 1 \\
0, & \text{otherwise}
\end{cases} \]

Find (a) \(E[Max(X_1, X_2, \ldots, X_n)] \) and (b) \(E[Min(X_1, X_2, \ldots, X_n)] \)

Solution

(a)

Let \(Y = Max(X_1, X_2, \ldots, X_n) \). Then,

\[F_Y(y) = P(Y \leq y) = P(X_1 \leq y, X_2 \leq y, \ldots, X_n \leq y) \]
\[= \prod_{i=1}^{n} P(X_i \leq y) \]
\[= \prod_{i=1}^{n} F_{X_i}(y) \]
\[= F_{X_1}(y)^n \]
\[= y^n \]

So,

\[E[Y] = \int_{0}^{1} y \cdot f_Y(y) \, dy \]
\[= \int_{0}^{1} y \cdot ny^{n-1} \, dy \]
\[= \int_{0}^{1} ny^n \, dy \]
\[= \frac{ny^{n+1}}{n+1} \bigg|_{0}^{1} \]
\[= \frac{n}{n+1} \]
Let \(Z = \text{Min}(X_1, X_2, \ldots, X_n) \). Then,

\[
F_Z(z) = P(Z \leq z) = 1 - P(Z > z) = 1 - P(X_1 > z, X_2 > z, \ldots, X_n > z)
\]

\[
= 1 - \prod_{i=1}^{n} P(X_i > z)
\]

\[
= 1 - \prod_{i=1}^{n} 1 - P(X_i \leq z)
\]

\[
= 1 - \prod_{i=1}^{n} 1 - F_X(z)
\]

\[
= 1 - (1 - z)^n
\]

So,

\[
E[Z] = \int_{0}^{1} z \cdot f_Z(z) \, dz
\]

\[
= \int_{0}^{1} z \cdot n(1 - z)^{n-1} \, dz
\]

Note: We can integrate using integration by parts. \(\int u \, dv = uv - \int v \, du \). In our case \(u = z^n \), \(dv = (1 - z)^{n-1} \, dz \), which yields

\[
= z(1 - z)^n - \int \frac{(1 - z)^{n+1}}{n+1} \, dz
\]

\[
= 0 - \left[-\frac{1}{n+1} \right]_0^1
\]

\[
= \frac{1}{n+1}
\]

Problem 33 (page 135)

Question

Ten balls are randomly chosen from an urn containing 17 white and 23 black balls. Let \(X \) denote the number of white balls chosen. Compute \(E[X] \)

(a) by defining appropriate indicator variables \(X_i, i = 1, \ldots, 10 \) so that

\[
X = \sum_{i=1}^{10} X_i
\]

(b) by defining appropriate indicator variables \(Y_i, i = 1, \ldots, 17 \) so that

\[
X = \sum_{i=1}^{17} Y_i
\]

Solution

(a)

Let \(X_i \) be the indicator variable denoting whether the ith choice was white (1) or black (0). Then \(X = \sum_{i=1}^{10} X_i \), and \(P(X_i = 1) = \frac{17}{40} \). So,
\[E[X] = E \left[\sum_{i=1}^{10} X_i \right] \]
\[= \sum_{i=1}^{10} E[X_i] \]
\[= 10 \cdot E[X_i] \]
\[= 10 \cdot \frac{17}{40} \]
\[= 4.25 \]

*Note: The *ith ball is equally likely to be any of the 40 original balls, so its probability of being white is the same as for the first ball.*

(b)

Let \(Y_i \) be the indicator variable denoting whether the *ith white ball was chosen* (1) or not (0). Then \(X = \sum_{i=1}^{17} Y_i \), and to find the probability that the *ith white ball was chosen* we can write,

\[
P(Y_i = 1) = P(\text{White ball was chosen})
= P(\text{White ball was chosen first}) + P(\text{White ball was chosen second (and not first)}) + \ldots + P(\text{White ball was chosen the 10th time (and not the 9 previous times)})
= \frac{1}{40} + \frac{39}{40} \cdot \frac{1}{39} + \frac{39}{40} \cdot \frac{38}{39} + \ldots + \frac{39}{40} \cdot \frac{38}{39} \ldots \frac{31}{30} + \frac{39}{40} \ldots \frac{31}{30} \ldots \frac{3}{2} \frac{1}{2}
= \frac{10}{40}
\]

So

\[E[X] = E \left[\sum_{i=1}^{17} Y_i \right] \]
\[= \sum_{i=1}^{17} E[Y_i] \]
\[= 17 \cdot E[Y_i] \]
\[= 17 \cdot \frac{10}{40} \]
\[= 4.25 \]

Problem 44 (page 137)

Question

Let \(X_i \) denote the percentage of votes cast in a given election that are for candidate *i*, and suppose that \(X_1 \) and \(X_2 \) have a jdf

\[
f_{X_1, X_2}(x, y) = \begin{cases}
3(x + y), & \text{if } x \geq 0, y \geq 0, \text{ and } 0 \leq x + y \leq 1 \\
0, & \text{if otherwise}
\end{cases}
\]

(a) Find the marginal densities of \(X_1 \) and \(X_2 \).
(b) Find \(E[X_i] \) and \(Var(X_i) \) for \(i = 1, 2 \).
Solution

(a) First we will examine X_1. The marginal distribution of X_1, $f_{X_1}(x)$ is the integral of the jdf, $f_{X_1,X_2}(x,y)$ over all possible values of $X_2(y)$. By the definition of the jdf above, we know that $f_{X_1,X_2}(x,y)$ will only be non-zero if $x \geq 0$, $y \geq 0$, and $0 \leq x+y \leq 1$. This implies that given some fixed value for x, $0 \leq y \leq 1-x$. Therefore we have,

$$f_{X_1}(x) = \int_0^{1-x} f_{X_1,X_2}(x,y) \, dy$$

$$= \int_0^{1-x} 3(x+y) \, dy$$

$$= 3xy + \frac{3}{2}y^2 \bigg|_0^{1-x}$$

$$= \frac{3}{2}(1-x^2) \text{ for } 0 \leq x \leq 1$$

Using similar arguments we can show that $f_{X_2}(y) = \frac{3}{2}(1-y^2) = f_{X_1}(y)$

(b) Since the marginal distributions of X_1 and X_2 are identical, $E[X_1] = E[X_2]$ and $Var(X_1) = Var(X_2)$. Starting with $E[X_1]$,

$$E[X_1] = \int_0^1 x \cdot f_{X_1}(x) \, dx$$

$$= \int_0^1 x \cdot \left(\frac{3}{2}(1-x^2) \right) \, dx$$

$$= \int_0^1 \frac{3x}{2} - \frac{3x^3}{2} \, dx$$

$$= \frac{3x^2}{4} - \frac{3x^4}{8} \bigg|_0^1$$

$$= \frac{3}{8}$$

And for $Var(X_1)$,

$$Var(X_1) = E[X^2] - E[X]^2$$

$$= E[X^2] - \frac{9}{64}$$

$$= \int_0^1 x^2 \cdot f_{X_1}(x) \, dx - \frac{9}{64}$$

$$= \int_0^1 \frac{3x^2}{2} - \frac{3x^4}{2} \, dx - \frac{9}{64}$$

$$= \frac{3x^3}{6} - \frac{3x^5}{10} \bigg|_0^1 - \frac{9}{64}$$

$$= \frac{1}{5} - \frac{9}{64}$$

$$= \frac{19}{320}$$
Problem 52 (page 139)

Question
If X_1 and X_2 have the same pdf, show that

\[\text{Cov}(X_1 - X_2, X_1 + X_2) = 0 \]

Note: we are not assuming that X_1 and X_2 are independent

Solution
We know that \(\text{Cov}(X, Y) = E[X \cdot Y] - E[X] \cdot E[Y] \). Therefore we can write,

\[
\text{Cov}(X_1 - X_2, X_1 + X_2) = E[(X_1 - X_2) \cdot (X_1 + X_2)] - (E[X_1 - X_2] \cdot E[X_1 + X_2])
\]
\[
= E[X_1^2] + E[X_1X_2] - E[X_2X_1] - E[X_2^2] - (E[X_1]^2 + E[X_1]E[X_2] - E[X_2]E[X_1] - E[X_2]^2))
\]
\[
= E[X_1^2] - E[X_2^2] - E[X_1]^2 + E[X_2]^2
\]
\[
= E[X_1^2] - E[X_2]^2 - (E[X_2^2] - E[X_2]^2)
\]
\[
= \text{Var}(X_1) - \text{Var}(X_2)
\]
\[
= \text{Var}(X_1) - \text{Var}(X_2)
\]
\[
= 0
\]

Where the 2nd to last line follows because X_1 and X_2 have the same pdf, and therefore the same variance.