Why he thinks this, however, is a little unclear. In "Dr. Atkins' Diet Revolution" he thought that the key was in the many trips to the bathroom: "Hundreds of calories are sneaked out of your body every day in the form of ketones and a host of other incompletely broken down molecules of fat. You are disposing of these calories not by work or violent exercise — but just by breathing and allowing your kidneys to function. All this is achieved merely by cutting out your carbohydrates." Unfortunately, the year after that original edition of Atkins' book came out, the American Medical Association published a devastating critique of this theory, pointing out, among other things, that ketone losses in the urine and the breath rarely exceed a hundred calories a day—a quantity, the A.M.A. pointed out, "that could not possibly account for the dramatic results claimed for such diets." In "Dr. Atkins' New Diet Revolution," not surprisingly, he's become rather vague on the subject, mysteriously invoking something he calls Fat Mobilizing Substance. Last year, when I interviewed him, he offered a new hypothesis: that ketosis takes more energy than conventional food metabolism does, and that it is "a much less efficient pathway to burn up your calories via stored fat than it is via glucose." But he didn't want to be pinned down. "Nobody has really been able to work out that mechanism as well as I would have liked," he conceded.

This simplified picture of the Glycogen Phosphorylase dimer is rotated 90° compared to the picture on 582–585. In Ch 23

Phosphorylase b (Active R form) Phosphorylase b (Inactive T form) Phosphorylase a (Inactive T form) Phosphorylase a (Active R form)