Answers to review problems for Exam #2, Math 151, Sections 13, 14, 15

1. i) \(\frac{5 \cos(5x) + 2e^{2x}}{\sin(5x) + e^{2x}} \). **Hint:** Use the chain rule.

 ii) \(\frac{6x - 5}{1 + (3x^2 - 5x + 2)^2} \). **Hint:** Use the chain rule.

 iii) \(-e^x \cos(x) \sin(x) + e^x \cos(x)(e^x)\). **Hint:** Use the product rule and the chain rule.

2. \(y = 8x - 2 \). **Hint:** Use the implicit differentiation to find the slope.

3. \(f(4) \geq 16 \). **Hint:** Use the mean value theorem: \(f(4) - f(1) = f'(c)(4 - 1) \) for some \(c \) satisfying \(1 \leq c \leq 4 \). Since \(f'(c) \geq 2 \), \(f'(c)(4 - 1) \geq 6 \). So \(f(4) \geq 16 \).

4. (a) \(h'(x) = 10x\sqrt{44 - 35x^2} \) and \(h'(1) = 30 \). **Hint:** Use the chain rule.

 (b) \(h(0.95) \simeq 1.5 \). **Hint:** Use \(h(0.95) \simeq h(1) + h'(1)(0.95 - 1) \), \(h(1) = f(2) = 3 \) and \(h'(1) = 30 \).

 (c) Likely to be greater than the true value of \(h(0.95) \). Reason: Since \(h''(1) = -\frac{260}{3} \) is negative, the graph of \(h(x) \) is concave downward near \(x = 1 \). So the tangent line is above the graph. Thus the linear approximation is greater than the true value.

5. (a) \(1 - \frac{x}{2} \). **Hint:** Use the linear approximation formula: \(f(x) \simeq f(a) + f'(a)(x - a) \).

 (b) 0.995. **Hint:** Take \(x \) to be 0.01 in the linear approximation above.

6. i) 0. **Hint:** Use L'Hôpital's rule.

 ii) \(\frac{2}{\pi^2} \). **Hint:** Use L'Hôpital's rule.

 iii) 0. **Hint:** Use L'Hôpital's rule.

 iv) \(\frac{3}{2} \). **Hint:** Use \(x - \sqrt{x^2 - 3x} = \frac{3x}{x + \sqrt{x^2 - 3x}} \) and then use either the method of compute limits of algebraic functions or L'Hôpital's rule.

 v) \(e^{2} \). **Hint:** Take the logarithm of \((1 + 2x)^{\frac{1}{2}} \) and then use L'Hôpital's rule.

7. (a) We have \(f(0) = 1 \) and \(f(1) = -\sin 3 \). Since \(0 < 3 < \pi \), we know that \(\sin 3 > 0 \). So \(f(1) = -\sin 3 < 0 \). Thus 0 is between \(f(0) \) and \(f(1) \). By the intermediate value theorem, there is \(c \) between 0 and 1 such that \(f(c) = 0 \), that is, \(f(x) \) has a root in \([0, 1]\).

 (b) \(g(x) = x + \frac{1 - x - \sin(3x)}{1 + 3\cos(3x)} \). **Hint:** Use the formula \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \).
\(x_1 = 0.5 + \frac{0.5 - \sin(1.5)}{1 + 3\cos(1.5)} \) and
\[x_2 = 0.5 + \frac{0.5 - \sin(1.5)}{1 + 3\cos(1.5)} + \frac{0.5 - \frac{0.5 - \sin(1.5)}{1 + 3\cos(1.5)} - \sin(1.5 + 3\frac{0.5 - \sin(1.5)}{1 + 3\cos(1.5)})}{1 + 3\cos(1.5 + 3\frac{0.5 - \sin(1.5)}{1 + 3\cos(1.5)})}. \]

8. (a) \(\lim_{x \to \infty} f(x) = \infty \) and \(\lim_{x \to -\infty} f(x) = 0 \). \textbf{Hint:} Since \(\lim_{x \to \infty}(x^2 - 1) = \infty \) and \(\lim_{x \to \infty} e^x = \infty \), \(\lim_{x \to \infty} f(x) = \infty \). For \(\lim_{x \to -\infty} f(x) \), use L'Hôpital's rule.

(b) \(f'(x) = (x^2 + 2x - 1)e^x \). The exact solutions of \(f'(x) = 0 \) are \(-1 \pm \sqrt{2} \). When \(x \leq -1 - \sqrt{2} \) or \(x > -1 + \sqrt{2} \), \(f'(x) > 0 \). When \(-1 - \sqrt{2} < x < -1 + \sqrt{2} \), \(f'(x) < 0 \).

(c) \(f''(x) = (x^2 + 4x + 1)e^x \). The exact solutions of \(f''(x) = 0 \) are \(-2 \pm \sqrt{3} \). When \(x \leq -2 - \sqrt{3} \) or \(x > -2 + \sqrt{3} \), \(f''(x) > 0 \). When \(-2 - \sqrt{3} < x < -2 + \sqrt{3} \), \(f''(x) < 0 \).

(d) See the picture.

9. (a) Local minimum: 0. Local maximum: 2. \textbf{Hint:} Use the information on \(f'(x) \).

(b) Inflection points: \(-1, 1, 3 \). \textbf{Hint:} Use the information on \(f''(x) \).

(c) See the picture.

(d) No. For \(x > 4 \), \(f''(x) > 0 \). So \(f'(x) \) is increasing when \(x > 4 \). But \(f'(4) = 0 \). So \(f'(x) \geq 0 \) for \(x > 4 \).

10. (a) \(\theta = \tan^{-1}\frac{a}{b} \). \textbf{Hint:} Draw a picture.

(b) \(\theta = \tan^{-1} 2 \) and \(\frac{d\theta}{dt} = -\frac{1}{90} \). \textbf{Hint:} \(\theta \) can be obtained by just substitute the values of \(a \) and \(b \). \(\frac{d\theta}{dt} \) is obtained by using chain rules (both \(a \) and \(b \) are functions of \(t \)) and then using \(a = 10, b = 5, a' = 0.3 \) and \(b' = 0.4 \).

11. 5062.5. \textbf{Hint:} Let \(y \) be the length of the sides with parallel fencing inside and \(x \) the length of the other two sides. Then the area \(A = xy \) and we have the constraint \(2x + 5y = 450 \). So \(A = 90x - \frac{2}{5}x^2 \). The domain is \([0, 225]\). \(A \) reaches its maximum at \(x = 112.5 \). Then calculate the area at this \(x \).

12. \(f\left(\frac{\pi}{6}\right) = -\frac{325\pi^3}{108} + \frac{5\pi}{6} - \frac{\sqrt{3}}{2} + 1 \). \textbf{Hint:} Find \(f'(x) = -6x^2 + \sin x + 6\pi^2 - 1 \) first. Then find \(f(x) = -2x^3 - \cos x + (6\pi^2 - 1)x + 1 - 4\pi^3 + \pi \).