Cell Processing and Sheet Resistance

Dunbar P. Birnie, III
dbirnie@rci.rutgers.edu

15 November 2004
Outline

• Recap of Resistivity Equations
• Connection to Cell Geometry
• Discussion of Cell Processing and Geometry
• Series Resistance Effects Throughout
Series Resistance

- \(V = IR \)
- \(R = \text{sum of terms:} \)
 - Bulk silicon resistance
 - Sheet Resistance of top Layer
 - External Load
Basic Conductivity Relations

\[\sigma = \frac{\Delta J}{\mathcal{E}} = q(n \mu_n + p \mu_p) \]

\[\rho = \frac{1}{\sigma} = \frac{1}{q(\mu_n n + \mu_p p)} \]
Mobility vs. Doping

Red = n-type, Blue = p-type

Resistivity vs. Doping

Red = n-type, Blue = p-type

Sheet Resistance Equations

\[R_s = \frac{\rho}{t} \]

\[R = R_s \frac{L}{W} \]
Sheet Resistance vs. Doping

Red = n-type, Blue = p-type --- 14 mil Si wafer Thickness

Case Study on Single Crystal Cell Processing Sequence

• Credit to SJSU/Prof. David Parent
• Processing Sequence
• Data
Fabrication of Solar Cells

• Diffuse donor region
• Apply aluminum coating to front of wafer
• Photolithography to define solar cell pattern
• Etch aluminum to create solar cell pattern
• Apply anti-reflection coating *
• Apply aluminum coating to back of wafer
• Anneal wafers
• Remove outer edges of wafers
Diffuse Donor Region

• Spin on phosphorous doped silica glass
 ▪ Apply 3ml to front of wafer
 ▪ Spin @ 3000 rpm for 20 seconds

• Diffuse in furnace
 ▪ Heat furnace to 1100°c
 ▪ Push in wafers ½ inch per 15 seconds
 ▪ Diffuse for 1 hour
 ▪ Pull out wafers ½ inch per 15 seconds

• Makes wafer into a large diode
Apply Aluminum Coating

• Desire 2 microns thickness
• Sputter on the aluminum
 ▪ Accurate and precise
 ▪ Fast (2 microns onto 8 wafers in 15 min.)
 ▪ Prone to breaking down

- Or -

• Evaporate on aluminum
 ▪ Reliable
 ▪ Slow (2 microns onto 24 wafers in 3 to 4 hours)
 ▪ Not very precise
Photolithography

- Apply 3ml photo-resist; Spin for 20s @ 5000 rpm
- Soft bake for 90°C for 30 minutes
- Place solar cell mask on wafer
- Place both into wooden and glass holder
- Expose under lamp for 2 minutes
- Develop for 15 seconds
Etch Aluminum

- Etch exposed Al using hot sulfuric acid
- Rinse with DI water
- Remove remaining PR using plasma etch
Apply Anti-reflection Coating

- Apply 3ml Titaniumsilica film
- Spin @ 3000 rpm for 20 seconds
- Spreads film to thickness of 1000 angstroms
Anneal Wafers

- Anneal for 30 minutes in furnace
- Creates ohmic contact between Al and Si
Cleave Edges of Wafers

• Need to prevent shorting along edge of wafer
• Use scribe tool to score along edges of solar cell
• Cleave wafer along scoring
Testing the Solar Cells

- Scored, or roughened, back of cells
- Placed onto roughened aluminum wafer
- Used probes to make contacts
 - One probe onto the corner of the cell’s al grid
 - One probe onto the al wafer
- Tried various methods for making good contacts
 - Solder paste
 - Silver paste
 - Copper tape
Testing the Solar Cells

• Illuminated the cell
 ▪ Used 75W light bulb at 3cm distance

• Connected voltmeter to probe terminals
 ▪ Gives open circuit voltage

• Connected current source to probe terminals
 ▪ Ran current against that being generated by the cells
 ▪ Measured voltage for different current levels
IV Curves for One Half of Grid Solar Cells

Pmax S13A = 41.9 mW Pmax S6A = 49.8
IV Curves for Small Grid Solar Cells

$P_{max} S21 = 61.4 \text{ mW}$ \hspace{1cm} $P_{max} S8 = 71.5 \text{ mW}$
Metal Contact Geometry on Cells
Sheet Resistance vs. Doping

Doping concentration [cm$^{-3}$]

Red = n-type, Blue = p-type --- 14 mil Si wafer Thickness