Dr. Peter R. Gillett
Associate Professor
Department of Accounting & Information Systems
Rutgers Business School – Newark & New Brunswick

22:010:622
Internet Technology and E-Business
Overview

- Review of Last Week?
- Client Threats
- Data Collection and Analysis
- Internet Pricing
- Security Issues
- Firewalls and Related Technology
- Simple Game Theory
The Big Issues

Turban et al. quote a Georgia Tech. survey (97-98) of the most significant issues facing the Internet:

1. Censorship (privacy issues)
2. Privacy
3. Navigation (not really privacy)
4. Taxation
5. Encryption
Domain Names

- Cybersquatting
- Name changing
- Name stealing
Client Threats

- Active Content
 - Java applets
 - ActiveX Controls
 - JavaScript
 - VBScript
- Cookies
- Trojan Horses
- Zombies
- Viruses
- Worms
- Steganography
Big Issues

- Privacy and the World
 - The Internet is global
 - Different views:
 - USA: privacy is balanced against the needs of society
 - Europe: privacy a constitutional right

- General Issues
 - Accuracy
 - Property
 - Accessibility and verifiability
Data Collection on the Web

- Primary types collected on Web Sites
 - Domains
 - Countries, companies
 - IP address, browser type, etc.

- Timing Records
 - How long on web site?
 - How long to a purchase?
 - When?
 - Repeat visits?
Data Collection on the Web

- Time Series of data
 - Descriptive: what happened
 - Predictive: anticipate what will happen next
 - Explanation: why this lead to a sale.

- Seasonality effects: E-marketing and winter holiday season. Day and night.

- Periodic: weekends

- Trends: increasing sales overall, decreasing sales per minute visited

- Whose property are the predictions?
Data Analysis

- Where can we get the data about our website?
- Types of statistical analysis
- A time series is stationary if it has no periodic variation and no trend and no change in variance
- Looking for trends
<table>
<thead>
<tr>
<th>Competitive Marketing</th>
<th>Cooperative Marketing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal Assault (Amazon.com vs. BN.com)</td>
<td>Joint Venture (Microsoft)</td>
</tr>
<tr>
<td>Flank Attack (e*Trade vs. Schwab)</td>
<td>Value Chain partnership (Dell, ingredient marketing)</td>
</tr>
<tr>
<td>Raise Structural barriers (lots of costly development or marketing)</td>
<td>Lower Desire for attack (joint marketing programs)</td>
</tr>
</tbody>
</table>
Internet Firms Raising Prices!

Why?

* People seem willing to pay more
* Costs are higher
* Not able to buy in bulk like larger brick-and-mortar stores
* Equity markets no longer willing to support money-losing enterprises

What is the cardinal rule of pricing?

Why have Internet firms focused on price?
Internet Pricing

- X loses $1 on each unit they sell, but that is OK since they make it up on volume!
- How? Primary and secondary data
 - Controlled Experiments
 - Conjoint Surveys
 - Market Intelligence
Advantages of Internet Pricing?

- Speed
- Audience
- Experiments
 - Fast
 - Large
- Market Intelligence
Key Security Issues

- Authentication
- Secrecy
- Data
 - Firm’s data
 - Customer data
 - Internal data
- Hierarchy of Security
Extranets are harder to secure than intranets
- Must deal with lots of other systems
- Outer firewall protects from gross misuse
- Perhaps the best way: packet filtering firewall

Intranets generally have more tight security
- More sensitive information
- ORB: Object Request Broker model
 - Sending your Objects (data) where?
 - Not keeping things totally secured
Security: Flavors

- SecurID: One-Time Pad
 - Risks?
 - Lost or stolen

- Hashing or finger-printing as an ID
 - What is hashing?
 - Hashing: many to fewer
Bellcore’s S/Key System

- Start with a secure password
 - Using the same algorithm
 - Host and local server generate many one-time passwords
 - Use passwords sequentially
 - After each use, dispose of passwords

- Like One-Time Pads
- Like SecurID’s hardware tokens
PPP, PAP, & CHAP

- **PPP**: point to point protocol
 - Secure links
 - Secure the transmission and exchange
 - Transmit passwords, User Ids, etc.
 - Allows challenges of authentication
 - Things change
 - Packets intercepted, etc.

- **PAP**: Password Authentication Protocol
 - Clear text id and password pairs
 - Acknowledgements

- **CHAP**: Three-way handshake protocol using hashing
Other Security Methods

- Business: different needs
- RADIUS: Remote Authentication Dial In User Service
- TACACS: Cisco’s server security protocol
 - Administers
 - Authentication
 - Authorization
 - Account information for users
TACACS and Cisco

- Uses a centralized server to hold all information
 - Why not distributed?
- Sends all data in cleartext (TACACS+ uses encryption for sending)
- Can handle a few other protocols!
- Business issues?
SSL

- Secure Socket Layer
- History
 - Unix Sockets and Pipes
 - Sockets and TCP/IP
- Internet Engineering Task Force and Netscape
- Goal: “privacy and reliability between two communicating applications”
SSL Goals

- Secure crypto connection between 2 parties
- Interoperability with different programs
- Extensibility: add new cryptographic methods as they appear
- Relative efficiency
SSL

Two Layers

- Low Level: Record Protocol (build on TCP/IP) encapsulates higher level protocols
- Top Level Protocol: Handshake Protocol
 - Server and client authenticate each other
 - Negotiates encryption algorithms and keys
- Top Level: Various Application Protocols
 - Different programs
 - Netscape, IE, etc.
SSL

- Private connection (via a socket)
- Authentication can use asymmetric encryption (RSA)
- Encryption used after initial handshake
 - Symmetric encryption is used for transmission (like DES)
- The connection must be reliable (TCP/IP) often over a socket
Firewall FAQ

- Filter in/out access control
- Access control consistency
- Covers bad application protocols
- Cost/service benefit
- Network level
- Application level
 - ftp
 - Proxy
 - Direct
Firewall FAQ

- Allow only what is necessary
- Consider space between Extranet and Intranet to be “DMZ”
- Try to isolate single points of failure
- There are few technical solutions for social problems
- Watch out for:
 - ICMP re-directs
 - Proxies and mirrored data
 - DNS spoofing: IP hijacking, etc.
Firewall FAQ

- Watch for:
 - Port Scans
 - Sniffing
 - Password (use RSA, etc.)
 - Clear Text Sniffing

- Preventives
 - Use sniffers yourself
 - Monitor traffic
 - Anomaly detection
Firewall Heuristics

- Increase the level of security as you “go into your network site”
- In other words: inner fire-walls “stronger” than outer fire-walls
- Why?
- Partition Intranet and Extranet into security zones, possibly orthogonal to each other
- Include an experienced human in the loop
Other Methods

- PGP: protocol, see http://www.pgp.com/
- Secure MIME (Multipurpose Internet Mail Extensions): a hierarchical approach
- Cyber Cash
- SSL: get a secured link (socket)
System Penetration

- Reconnaissance
- Probe and attack
- Toehold
- Advancement
- Stealth
- Listening post
- Takeover
E-Commerce and Business

- On-line shopping grew by 300% Between 1997 and 2000
- On-line shopping grew by 600% in the last year
- Security made this possible
- IBM: “e-business is the transformation of key business processes through the use of Internet technologies”
ATM: Asynchronous Transfer Mode

- http://www.npac.syr.edu/users/mahesh/homepage/atm_tutorial
- http://www.iec.org/tutorials/atm_fund/topic01.html
- Integrates Voice, Video and Data
- Uses short fixed length packets called cells
- Not guaranteed delivery: best effort
- Bandwidth on demand: define circuit then get bandwidth
- Once a path is found from source and destination:
 - Then virtual circuit is established
 - All cells travel this path
ATM Design Questions

- Fixed length cells (48 bytes + 5 byte header)
 - Why? What does this have to do with Video, etc.
- Cells are delivered in order (though some can be lost)
- VPC: Virtual Path Connection: which path to take, that is for virtual circuits
- VCC: Virtual Channel Connection or a Virtual Circuit
- ATM network focuses on the VPC (the block of common start and destination virtual circuits)
 - Why is this good? Failure?
ATM Flavors

- Five service classes
 - constant bit rate (CBR)
 - variable bit rate–non-real time (VBR–NRT), uses statistical multiplexing
 - variable bit rate–real time (VBR–RT)
 - available bit rate (ABR)
 - unspecified bit rate (UBR)

- In what business sense are these useful?
ATM: Benefits

- ATM is between Circuit Switching and Packet Switching
- Uses “Statistical Multiplexing” for fast switching technology
 * Multiplexing: joining data for the trip
 * Gives high bandwidth use
- Very high speed
- Integrated types of traffic (Voice, Data, Video)
ATM General Design: PROS

- Not hardware or software specific
- Covers both LANs and WANS
- Super-scalability:
 - Number of users (multiplexing)
 - Geographic distance
- Consistent speed achievable by keeping same circuit
ATM General Design: CONS

- High overhead for each cell (lots of descriptive information)
- Packet loss possible: best effort, not guaranteed cell arrival (like TCP).
- Quality-of-service hard to guarantee
ATM: LAN or WAN?

- Can perform both broadcast and point-to-point
- Can use IP protocol
- Can use
 - 144 to 150 Mbps: OC3
 - 622 Mbps: OC12
 - 2.5 Gbps: OC48
 - Others…
VPNs

Virtual Private Networks

- Private networks constructed within a public network infrastructure such as the global Internet
- Communications environments in which access is controlled to permit peer connections only within a defined community of interest, and is constructed through some form of partitioning of a common underlying communications medium, where this underlying communications medium provides services on a non-exclusive basis
VPNs

- Link layer
- Network layer
- Transport layer
- Application layer
Simple Game Theory

- Zero Sum Games
- General Sum Games: all equilibriums don’t have the same payoffs!
 - Maximizing I does NOT necessarily Minimize II
 - Pure Strategy: can have no equilibriums!
 - Mixed Strategy
- Nash’s Theorem: General Sum Pure Strategy Games Always Have Mixed Strategy Equilibriums!
The **Prisoner's Dilemma** shows how Pure Strategy can be locally optimal, but not globally optimal!

Nash Equilibrium: (max payoff)

In Nash Equilibrium iff for all s_i' we have:

$$g_i(s_1, \ldots, s_i', \ldots s_n) \leq g_i(s_1, \ldots, s_i, \ldots s_n)$$

Depends on other player’s choices.
Prisoner's Dilemma

<table>
<thead>
<tr>
<th></th>
<th>A<sub>1</sub></th>
<th>A<sub>2</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(3,3)</td>
<td>(0,4)</td>
</tr>
<tr>
<td>D</td>
<td>(4,0)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>
Lessons

- Nash Equilibrium: neither player has an incentive to move their position
- Rigid row and column issue!
- Not zero sum: no cooperation means not necessarily globally optimal
- What to do?