22:010:622
Internet Technology and E-Business

Dr. Peter R. Gillett
Associate Professor
Department of Accounting & Information Systems
Rutgers Business School – Newark & New Brunswick
INTRODUCTIONS

- Name
- Rutgers ID #
- Home Town or Country
- Undergraduate Degree and School
- Work Experience
 - Firm
 - Job
- Computer Skills: Internet Skills
- Hobbies and Interests
OVERVIEW

- Complete student introductions?
- Discuss BlackBoard/Syllabus/Timetable problems/questions/concerns
- Finish Introduction to Internet and E-Commerce
- Survey how the Internet works
BLACKBOARD

- gillett@everest.rutgers.edu
- www.rci.rutgers.edu/~gillett
- www.fom.rutgers.edu
- Login
- prg622-60_03
- Course Information
- Announcements
- Discussion Boards
- Etc.
SYLLABUS

- Memorandum
- Contact Information
- Description
- Grading
- Assignments
- Participation
- Examinations
- BlackBoard
- Academic Integrity
- Withdrawal Policy
- University Closings
- About the Instructor
TIMETABLE

- Preliminary at this stage
- Shows
 - Dates
 - Topics
 - Readings
 - Deliverables!
Some Loose Ends . . .

- T1
- OC3
- DoCoMo
T1

- Dedicated line
- Usually fiber optic (could be copper)
- 24 digitized voice channels or 1.544 Megabits /second of data
- 192,000 bytes / second – 80 time normal residential modem
- Much more reliable than telephone lines
- $1,000 - $1,500 per month
At one time, the main dedicated lines were either T1 or T3.

- T3 is equivalent to 28 T1 lines
 - 43.232 Megabits /second
Now there is a much wider range of choices.
We will learn more about this later.
OC3 lines are each equivalent to 84 T1 lines:
- 155 Megabits / second

$40,000 - $60,000 per month

OC192, by comparison, is equivalent to 64 OC3 lines:
- 9.6 Gigabits / second
DoCoMo

- DoCoMo mostly owned by NTT
- Cellular has several US standards: TDMA, CDMA, PCS? and GSM
- QualCom’s patent on CDMA (Code Division Multiple Access) hold up against Motorola’s Attack 1/23/2001
 - Not True in Europe (GSM) or Japan (I-Mode)
- I-Mode works on a Persistent Link on the Internet!
- What does this require?
 - Effectively Packet Switching of Radio Signals (constant roaming)
 - Charge for Service
Subscribers pay about $0.04 to send about 250 characters of text

450,000 new subscribers a month

W-CDMA for using I-Mode using other methods

Japan is a small Island

3G service (FOMA) has not been so successful
 * Only about 150,000 subscribers

NTT DoCOMo issued 50 Billion Yen bonds in January 2003

Moody downgraded rating to ‘negative’
Wireless Networked Digital Devices (Zimmerman)

- Will the Internet converge with Cellular and/or Radio and TV?
- This paper focuses on PDAs
 - Apple’s Newton
 - Palm Pilot
 - Wearable Computers
- Bandwidth Bottlenecks in the Airwaves
- Distance issues, others
Electronic Commerce

- B2C or B2B
- Intel on the Web (B2B)
 - From 0 to about $1 billion in orders a month
 - 45,000 faxes/quarter from Taiwan alone
- Started with EDI
- Extranets, Intranets today
- Very large opportunities
EC Pros for Firms

- 24/7
- Global, giant market place, more customers
- Pull technology & inventory management
- Reduces capital costs
- Level playing field for small business?
- Enables niche markets
EC Pros for Society

- Public services better
- Cheaper prices
- More competition
- More mixing of different economies
- New and larger communication media
EC Pros for Customers

- Cheaper products or services?
- More choices, larger market
- 24/7
- Customizable products
- Virtual auctions (distance & size)
- Electronic communities
Problems for EC

- Questionable EC Patents
 - Patents for Business Processes
 - Questionable Business Models
 - “Dot-Coms with patents are worth 10% more”

- Standards for quality, reliability & security
- Bandwidth issues
- Legacy application integration
- Cost
- Taxation
- International Issues
More Problems for EC

- Consumer hesitation
- Brick & mortar still good alternative
- Zealous government regulation
- Money problems lately: market shakeout
- Depends on complex systems
- Disintermediation & displacement
EC Business Models

- Advertising
- Market research/Data Marts
- Merchants
- Transactions, Finance
- Auctions
- Logistic details/services
- Support brick & mortar
Advantages of Ads on the Web

- Interactive & immediate feedback/purchase
- Data mining and other targeting techniques
- Benevolent demographics on the Web
- 24/7 interactive - pull & more one-to-one
- Going to multimedia
- Direct e-mail ads almost Free
- Often the ad runs on consumers machine
- Personalization and customization
E-Marketing

- Interactive Marketing - Instant
- Primary Data on the Web: OLAP & Simulation (http://www.olapreport.com)
- The Web has lots of secondary data
 - Government sites, proprietary data
 - Observe consumer’s movements
- Ask customers what they want: one-to-one
- CRM: Customer Relationship Management
- Market Intelligence & Bots
E-Commerce Infrastructure

- Networks
- Web servers
- Web server support and software
- E-catalogues
- Web Page Design and Construction Software
- Transaction Software (POS)
- Internet Access Components
- Other: Firewalls, email, etc.
How the Internet Works

- Packet switching
- TCP/IP
- IP Addresses
- Ping / tracert
- Client/Server and TCP/IP
- Domain Name Servers
- HTTP, SMTP, POP, IMAP
- OSI
- Ethernet
- Routing
- Quality of Service
- Moore’s Law?
Packet Switching

- We have already had a taste of this from prior lecture
- What does sharing network links do for us?
- Sharing by essentially taking turns, by the packets
- Variable sized packets are possible, though up to some limit
- Universal protocol eases use
Conflicting Network Technologies

- Incompatibility of net technology, even in the same firm
- Router: special computer to route packets
- ISP
 - Interesting pricing issues
 - Interesting connection topology issues
- Leased circuits are expensive
- The Last-Mile Problem
 - DSL and ADSL
 - Cable Modems
- Simulate continuous connectivity
TCP/IP

- Two layered protocol
- TCP controls the assembly and reassembly of packets
- IP is responsible for routing packets and the addressing details for the packets
- Routing Algorithms
- Other protocols: UDP for broadcasting (not peer to peer like TCP)
IP: Internet Protocol

- IP datagrams: packet in the format specified by the IP
- Notion of Virtual Network: IP and routing allows appearance of a completely connected network
TCP

- TCP provides reliable and error free communication
- Uses ACKs, that is acknowledgments and sequencing in the IP datagram packets
- Can force retransmission
- Automatically adjusts timeout based on network loads, distance, etc.
IP Addresses

- 32-bit numbers being phased into 128-bit numbers (IPv6)
- Packet contains source and destination address
- Dotted quads: 255.255.255.255
- Uniquely identifies each computer on the internet
- Name servers and domain names as syntactic sugar for the dotted quad numbers (URLs, etc.)
- Generally, computers on the same “subnet” or LAN have the same prefixes
Ping

- Answers: “Tell me how fast ‘very important’ packets take to get from my computer and back?”
- General network connectivity
- Also, tracks the order the packets are received in
- Internet Control Message Protocol (ICMP) Echo Request Packets sent by ping
- ICMP: what IP uses to communicate network information: “send fewer packets”, “send your packets over there”, etc.
Ping

- TTL: time to live
- TTL packet field set to 255
- TTL decremented by 1 for each router traveled through
- Normal message packets usually have TTL field set to 60
- Time field: round-trip time in milliseconds
- Watch the variance of the round trip time
traceroute

- Answers: “What path do my packets take to get to your computer?”
- Which router hops, how many and the time between the hops
- Uses TTL tricks to discern paths
 - First packets TTL = 1, when first router discards the packets (since TTL = 0), it sends back an ICMP message saying “discarded packet since TTL = 0” from router X
- Interesting asymmetric issues
Ping and traceroute

- Important Network diagnostics
- Carefully applied: eat lots of resources
- ping www.rutgers.edu or ping www.andromeda.rutgers.edu
- tracert www.rutgers.edu
- tracert www.google.com
- VisualRoute
Client/Server Model and TCP/IP

- Master/Slave or Resource Sharing
- Allows or Encourages Specialization
- Important model in Enterprise Computing
- Money Saver:
 - Shared resources
 - Virtual Network
- Common protocol, good and easy to interconnect with everyone
Client/Server Model and TCP/IP

- Peer to peer
- Today’s classic: http and web browser
 - Which is the client? Which is the server?
- TCP/IP allows easy communication
- Use of TCP/IP can be programmed into large distributed programs!
- Pipes and sockets
- TCP/IP allows one part of a program to wait for information from another computer without negative ramifications
- Real distributed computing - the power of parallelism
Client Server/Business Aspects

- Redundancy
- Cost
- Well understood paradigm
- Often based on well understood protocols (TCP/IP)
- Easy to plug into
- Can handle giant loads and jobs
Domain Name Servers (DNS)

- Like directory assistance
- Translates name (like www.rutgers.edu) into IP number (128.6.4.5)
- Essentially allows easy-to-use names for Client/Server paradigm to work
- Each computer on the Internet knows its DNS
- What if your DNS is not secure?
HTTP

- http: hypertext transfer protocol
 - Protocol responsible for transferring and displaying web pages
 - 1991 Tim Berners-Lee, at the time in CERN
- The transport part runs “on top of” TCP/IP
 - Movies, sound, graphics, etc. the http client automatically requests these from the http server
- HTML is the major display part that is used to display things in particular ways
SMTP, POP, IMAP

- Mail servers
- So far, email is one of the biggest “killer apps”
- SMTP: simple mail transfer protocol
 - Specifics and standards for email servers
- POP: post office protocol
 - Gets email from SMTP mail server
 - MIME: Multipurpose Internet Mail Extensions, that is attachments
- IMAP: Internet Message Access Protocol: more flexible and advanced than POP
Old Friends

- ftp, telnet and finger
- All can be used also for network debugging
- ftp and telnet for network movements
ISO/OSI Reference Layer Model

- www.it.kth.se/edu/gru/Telesys/95P2_Telesystem/HTML/Module4/ISO-1.html
- Based on Frank Reichert’s notes
- Describe Computer Communication Services and Protocols without making assumptions of
 - Programming languages bindings
 - Operating systems bindings
 - Application and User interface issues
- Models organize knowledge for discussion and dissemination
Define Communication Layers

- Where we must clearly define interfaces for development
- To group related functions together
- Use layering to insulate different places where changes occur
- Layers to expose and standardize important services
- Isolate the changes and the effects of changes as things evolve
- Documentation of existing services in a clear and independent manner
Famous Seven Layers

1. Physical Layer, electric, optical, or acoustic, etc.
2. Link Layer: reliable transfer across link layer, framing of data blocks, error detection, link control flow
3. Network Layer: data transmission, switching technology, topology of the network and paths for data
4. Transport Layer: reliable transparent data transfer between points, error recovery
Famous Seven Layers cont.

5. Session Layer: establishing a session, management of communications
6. Presentation Layer: Encryption, compression, attachments, etc.
7. Application Layer: Managing communication of applications at a high level.
ISO/OSI Layers

- Where does all the stuff we talk about fit in?
- TCP/IP?
- Business Applications?
- Why is the ISO/OSI model useful?
Daryl’s TCP/IP Primer

- www.ipprimer.com/section.cfm
- Ethernet
- ISO Model
- IP addresses and masks
- Subnetting
- TCP and UDP
- DNS
- Q&A
Ethernet in some Detail

- XEROX PARC in early 1970s
- Simple, High speed, Reliable and one of the most long-lasting network protocols ever
- Most popular forms:
 - 10BaseT, unshielded twisted pair all connect in a star to a single hub
 - 10Base2, single coaxial cable in “bus configuration”
 - 10BaseF, fiber optic cables, often star with central hub
Ethernet in some Detail

<table>
<thead>
<tr>
<th></th>
<th>Pros</th>
<th>Cons</th>
<th>10km dist.</th>
<th>No electrical interference</th>
<th>Costly</th>
</tr>
</thead>
<tbody>
<tr>
<td>10baseT</td>
<td>Reliable</td>
<td>Short dist to hub</td>
<td>Small Office or home</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10Base2</td>
<td>No hub, 200m dist.</td>
<td>One break, no network</td>
<td>Small networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10BaseF</td>
<td>1km dist.</td>
<td>Costly</td>
<td>Large Scale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ethernet in some Detail

- Daryl: “A bunch of loud people in an unmediated meeting room”
- Collision detection and random retries:
 - CSMA/CD: Carrier Sense Multiple Access with Collision Detection
- Famous RJ45 connectors: like large phone connectors
- 100BaseTX is used too, likewise Gigabit or 1000Mbps
Bottom of the OSI Model

- Network: IP, AppleTalk, IPX, all use routers
- Datalink: Ethernet, token ring, PPP, SLIP: bridges repeaters and hubs
- Physical: twisted pair, coax, serial cable, fiber: use modems, CSU/DSUs
- Each model cannot see the model below it
IP addresses in Detail

- RFC 1812 the basis of present IP
- Go to www.freesoft.org/CIE/RFC/1812
- Old RFC had class “A”, “B” or “C” IP addresses
- New CIDR (Class Internet Domain Routing)
- This gives a CLASSLESS addressing scheme, allows subnetting more easily
Net Masks

- Binary: AND, OR and XOR
- Allows subnetting, by forcing the packets addressing to pay attention only to part of the IP address
 - Convert IP to binary
 - AND subnet mask: leaves only a part of the IP address
- What is this for?
Suppose my computer is 129.66.240.15

I want to send a message to 129.65.15.240

Are they on the same subnet?

What is my subnet mask?
Net Masks

- Say it is 255.255.0.0
- I am at
 10000001 01000010 11110000 00001111
- I want to send to
 10000001 01000001 00001111 11110000
- My subnet mask is
 11111111 11111111 00000000 00000000
Net Masks

- Say it is 255.252.0.0
- I am at
 10000001 01000010 11110000 00001111
- I want to send to
 10000001 01000001 00001111 11110000
- My subnet mask is
 11111111 11111100 00000000 00000000