Multiple regression: fitting the best fitting plane

\[\hat{Y} = a + b_1 X_1 + b_2 X_2 \]

Where,
- \(a\) = intercept (when \(X_1 = 0 \) and \(X_2 = 0 \))
- \(Y \) = income
- \(X_1 \) = education
- \(X_2 \) = % female in occupation
- [unit of analysis = occupation]
Multiple regression: 3D model

Source: Agresti and Finlay, 1986, p. 317
Multiple regression: interpretation of b’s

- $b_1 =$ slope for education (net effect of education on income controlling for percent female; how much income in dollars for each year of education)
- $b_2 =$ slope for % female (net effect of percent female on income controlling for education; how much income in dollars for each percent female)

Coefficients called:
- Metric coefficient
- Net regression coefficient
- Unstandardized regression coefficient

Interpretation:
- Net effect
- Independent effect
- Controlling for
Multiple regression: standardized regression coefficients

\[\hat{Y} = a + b_1X_1 + b_2X_2 \]
\[\hat{y} = B_1x_1 + B_2x_2 \]

where, \(B_{yx} = b_{yx} \left(s_x/s_y \right) \)

Creating standard scores:

\[x_1 = (X_1-X_1)/sX_1 \]

Multiple regression: standardized regression coefficients

- B’s range from -1 to +1
- Interpretation: a one s.d. change in the independent variable, produces a predicted change of “Beta” s.d.’s in the dependent variable, net of other variables
- More common interpretation: if \(B_1 > B_2 \) then education is much more important in predicting income than is % female
- “considerably larger, more than twice as important”
Murdock data:

$Y =$ stratification, $X_1 =$ political integration,
$X_2 =$ money exchange

<table>
<thead>
<tr>
<th>Society</th>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
<th>Society</th>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>011</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>003</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>013</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>005</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>015</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>007</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>017</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>009</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>019</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculating standardized and unstandardized coefficients

Computational formula:

\[
 r = \frac{n \sum X_i Y_i - (\sum X_i)(\sum Y_i)}{\sqrt{[n \sum X_i^2 - (\sum X_i)^2][n \sum Y_i^2 - (\sum Y_i)^2]}}
\]
Calculating standardized and unstandardized coefficients

- \(r_{yx1} = 0.865 \)
- \(r_{yx2} = 0.620 \)
- \(r_{x1x2} = 0.482 \)

Calculating standardized coefficients

General formula:

\[
B_{yx.z} = \frac{r_{yx} - r_{yz}r_{xz}}{1 - r_{xz}^2}
\]

[General formula]
Calculating standardized coefficients

- $\beta_{y|x_1,x_2} = .737$
- $\beta_{y|x_2,x_1} = .265$

$\hat{y} = .737x_1 + .265x_2$

Interpretation: political integration is substantially more important than money in determining level of stratification

Calculating unstandardized coefficients

$b_{yx} = B_{yx} \left(\frac{s_y}{s_x} \right)$, using s.d. computational formula:

$$s_y = \sqrt{\frac{\sum Y^2}{n} - \left(\frac{\sum Y}{n} \right)^2}$$
Calculating unstandardized coefficients

Calculate s.d.'s:
- $s_y = .9$
- $s_{x1} = 1.37$
- $s_{x2} = 1.33$

Calculate b’s:
- $b_{yx1.x2} = B_{yx1.x2} \left(\frac{s_y}{s_{x1}} \right)$
 $= (.737) \left(\frac{.9}{1.37} \right) = .484$
- $b_{yx2.x1} = B_{yx2.x1} \left(\frac{s_y}{s_{x2}} \right)$
 $= (.265) \left(\frac{.9}{1.33} \right) = .179$

Calculating intercept

$\bar{Y} = a + b_1 \bar{X}_1 + b_2 \bar{X}_2$

$a = \bar{Y} - b_1 \bar{X}_1 - b_2 \bar{X}_2$

$a = (1.3) - (.484)(2.1) - (.179)(1.2) = .0688$

$a = .069$
Prediction equation

\[\hat{Y} = .069 + .484X_1 + .179X_2 \]

Interpret!

Calculating R²

\[R^2_{y,x1x2} = B_{yx1}r_{yx1} + B_{yx2}r_{yx2} \]
\[= (.737)(.865) + (.265)(.620) \]
\[= .802 \]

Interpretation: 80 percent of the variation in stratification is explained by political integration and money
Standardized vs. unstandardized coefficients

- Use standardized to compare variables within equations
- Use unstandardized to compare same variable across equations

Unstandardized coefficients

![Graph showing unstandardized coefficients for education and income]
Caveats

1) Don’t interpret regression lines beyond where you have data
2) Report to three significant nonzero digits (retain larger # of digits in intermediate calculations)
3) Multicollinearity: problem with high correlations