Factor Analysis via SAS

Good cite:

Larry Hatcher and Edward Stepanski,
“Principal Component Analysis” (Ch. 14) in
A Step-by-Step Approach to Using the SAS
System for Univariate and Multivariate
Statistics

Factor Analysis:
Purposes

1) Revealing patterns of inter-relationships
2) Detecting clusters of strongly correlated variables
3) Reducing large number of variables to smaller number of factors***
 (Way to handle multicollinearity)
***We’ll focus on (3)—scale construction
Factor Analysis

- Incorporate different variables to measure an underlying dimension
- Assumes an underlying causal structure

e.g., V_1 = “My supervisor treats me with consideration”
V_5 = “My pay is fair”

Source: Hatcher & Stepanski, p. 457
Factor Analysis:
Basic principle

- Start with large number of variables
- Find minimum number of underlying factors (principal components) that together account for the pattern of intercorrelations among observed variables
- Note: variables must be coded in similar ways (high = high)

Factor Analysis:
properties of principal components

- Component = linear combination
- Orthogonal to each other
- 1st principal component = largest variance of any linear function of original variables
- 2nd principal component = second largest of remaining variance
Eigenvalues
“Characteristic root of the matrix”

- Used to calculate variance of the factors
- Largest eigenvalue represents amount of variance in data explained by 1st factor
- Each factor has one eigenvalue
- Keep factors with eigenvalues > 1.0
- Wide variation in eigenvalues = severe multicollinearity

Eigenvectors

- AKA “factor loadings” (or, factor structure)
- Coefficients for linear transformation of the standardized variables
- Use to interpret structure of variables
- Used to compute correlations between original variables and new factor variables
- SAS: coefficients in factor pattern matrix and rotated factor pattern matrix
Eigenvectors (cont.)

Each observed variable viewed as determined by underlying factors:

e.g., \(\text{Var1} = \text{weight} \times F1 + \text{weight} \times F2 + \text{weight} \times F3 \ldots + \text{weight} \times \mu \)

Interpretation: largest weight = most important determinant

Eigenvectors (example)

\[\text{Var1} = .889F1 + .078F2 + .032F3 + d\mu \]

- \((\text{weight})^2\) = proportion of variance in variable accounted for by factor
- \((.889)^2 = 79\%\) of variance in \(\text{Var1}\) explained by \(F1\)
Eigenvectors (example)

h^2 (communality of variable):

\[h^2 = (.889)^2 + (.078)^2 + (.032)^2 \]

$h^2 = 79.7\%$ of variance in Var1 explained by F1 to F3

$1-h^2 = \text{proportion left unexplained by F1 to F3}$

\[\sqrt{1-h^2} = d \quad \text{(weight for residual term)} \]

Rotation

![Diagram showing rotation in a coordinate system with axes F_A and F_B.]
Rotation:
(Varimax: maximizes contrast)

Evaluate

- Factors are orthogonal, whether rotated or not
- Rotation makes clustering more obvious
- We’ll use “Varimax Rotation”: maximizes contrast between factors
- Evaluate loadings: criteria = .4 or .5
Evaluate

Principal component analysis ≠ factor analysis:
- Factor analysis assumes an underlying causal structure
- Principal component analysis makes no assumption of underlying causal model